4 resultados para ABLACIÓN CON CATÉTER

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resumen En la última década la tecnología láser se ha convertido en una herramienta imprescindible en la fabricación de dispositivos fotovoltaicos, muy especial¬mente en aquellos basados en tecnología de lámina delgada. Independiente¬mente de crisis coyunturales en el sector, la evolución en los próximos años de estas tecnologías seguirá aprovechándose de la flexibilidad y calidad de proceso de la herramienta láser para la consecución de los dos objetivos básicos que harán de la fotovoltaica una opción energética económicamente viable: la reducción de costes de fabricación y el aumento de eficiencia de los dispositivos. Dentro de las tecnologías fotovoltaicas de lámina delgada, la tecnología de dispositivos basados en silicio amorfo ha tenido un gran desarrollo en sistemas estándar en configuración de superestrato, pero su limitada efi¬ciencia hace que su supervivencia futura pase por el desarrollo de formatos en configuración de substrato sobre materiales flexibles de bajo coste. En esta aproximación, las soluciones industriales basadas en láser actualmente disponibles para la interconexión monolítica de dispositivos no son aplica¬bles, y desde hace años se viene investigando en la búsqueda de soluciones apropiadas para el desarrollo de dichos procesos de interconexión de forma que sean transferibles a la industria. En este contexto, esta Tesis propone una aproximación completamente orig¬inal, demostrando la posibilidad de ejecutar una interconexión completa de estos dispositivos irradiando por el lado de la lámina (es decir de forma com¬patible con la opción de configuración de substrato y, valga la redundancia, con el substrato del dispositivo opaco), y con fuentes láser emitiendo en UV. Este resultado, obtenido por primera vez a nivel internacional con este trabajo, aporta un conocimiento revelador del verdadero potencial de estas fuentes en el desarrollo industrial futuro de estas tecnologías. Si bien muy posiblemente la solución industrial final requiera de una solución mixta con el empleo de fuentes en UV y, posiblemente, en otras longitudes de onda, esta Tesis y su planteamiento novedoso aportan un conocimiento de gran valor a la comunidad internacional por la originalidad del planteamiento seguido, los resultados parciales encontrados en su desarrollo (un número importante de los cuales han aparecido en revistas del JCR que recogen en la actualidad un número muy significativo de citas) y porque saca además a la luz, con las consideraciones físicas pertinentes, las limitaciones intrínsecas que el desarrollo de procesos de ablación directa selectiva con láseres UV en parte de los materiales utilizados presenta en el rango temporal de in¬teracción de ns y ps. En este trabajo se han desarrollado y optimizado los tres pasos estándar de interconexión (los habitualmente denominados Pl, P2 y P3 en la industria fotovoltaica) demostrando las ventajas y limitaciones del uso de fuentes en UV tanto con ancho temporal de ns como de ps. En particular destaca, por el éxito en los resultados obtenidos, el estudio de procesos de ablación selectiva de óxidos conductores transparentes (en este trabajo utilizados tanto como contacto frontal así como posterior en los módulos) que ha generado resultados, de excelente acogida científica a nivel internacional, cuya aplicación trasciende el ámbito de las tecnologías de silicio amorfo en lámina delgada. Además en este trabajo de Tesis, en el desarrollo del objetivo citado, se han puesto a punto técnicas de análisis de los procesos láser, basadas en métodos avanzados de caracterización de materiales (como el uso combi¬nado de la espectroscopia dispersiva de rayos X y la microscopía confocal de barrido) que se presentan como auténticos avances en el desarrollo de técnicas específicas de caracterización para el estudio de los procesos con láser de ablación selectiva de materiales en lámina delgada, procesos que no solo tienen impacto en el ámbito de la fotovoltaica, sino también en la microelectrónica, la biotecnología, la microfabricación, etc. Como resultado adicional, parte de los resultados de este trabajo, han sido aplicados exi¬tosamente por el grupo de investigaci´on en la que la autora desarrolla su labor para conseguir desarrollar procesos de enorme inter´es en otras tec-nolog´ıas fotovoltaicas, como las tecnolog´ıas est´andar de silicio amorfo sobre vidrio en configuraci´on de superestrato o el procesado de capas delgadas en tecnolog´ıas convencionales de silicio cristalino. Por u´ltimo decir que este trabajo ha sido posible por una colaboraci´on muy estrecha entre el Centro L´aser de la UPM, en el que la autora de¬sarrolla su labor, y el Grupo de Silicio Depositado del Centro de Inves¬tigaciones Energ´eticas, Medioambientales y Tecnol´ogicas, CIEMAT, que, junto al Grupo de Energ´ıa Fotovoltaica de la Universidad de Barcelona, han preparado la mayor parte de las muestras utilizadas en este estudio. Dichas colaboraciones se han desarrollado en el marco de varios proyectos de investigaci´on aplicada con subvenci´on pu´blica, tales como el proyecto singular estrat´egico PSE-MICROSIL08 (PSE-120000-2006-6), el proyecto INNDISOL (IPT-420000-2010-6), ambos financiados porel Fondo Europeo de Desarrollo Regional FEDER (UE) ”Una manera de hacer Europa y el MICINN, y los proyectos de Plan Nacional AMIC (ENE2010-21384-C04-´ 02) y CLASICO (ENE2007-6772-C04-04), cuya financiaci´on ha permitido en gran parte llevar a t´ermino este trabajo Abstract In the last decade, the laser technology has turned into an indispensable tool in the production of photovoltaic devices, especially of those based on thin film technology. Regardless the current crisis in the sector, the evolution of these technologies in the upcoming years will keep taking advantage of the flexibility and process quality of the laser tool for the accomplishment of the two basic goals that will convert the photovoltaic energy into economically viable: the manufacture cost reduction and the increase in the efficiency of the devices. Amongst the thin film laser technologies, the technology of devices based on amorphous silicon has had a great development in standard systems of superstrate configuration, but its limited efficiency makes its survival de¬pendant on the development of formats in substrate configuration with low cost flexible materials. In this approach, the laser industrial solutions cur¬rently available for the monolithic interconnection are not applicable, and in the last few years the investigations have been focused on the search of appropriate solutions for the development of such interconnection processes in a way that the same are transferable to the industry. In this context, this Thesis proposes a totally original approach, proving the possibility of executing a full interconnection of these devices by means of irradiation from the film side, i.e., compatible with the substrate con¬figuration, and with UV laser sources. This result, obtained for the first time at international level in this work, provides a revealing knowledge of the true potential of these sources in the future industrial development of these technologies. Even though very probably the final industrial solution will require a combination of the use of UV sources along with other wave¬lengths, this Thesis and its novel approach contribute with a high value to the international community because of the originality of the approach, the partial results found throughout its development (out of which, a large number has appeared in JCR journals that currently accumulate a signifi¬cant number of citations) and brings to light, with the pertinent scientific considerations, the intrinsic limitations that the selective direct ablation processes with UV laser present in the temporal range of interaction of ns and ps for part of the materials used in this study. More particularly, the three standard steps of interconnection (usually de¬nominated P1, P2 and P3 in the photovoltaic industry) have been developed and optimized, showing the advantages as well as the limitations of the use of UV sources in both the ns and ps pulse-width ranges. It is highly remark¬able, because of the success in the obtained results, the study of selective ablation processes in transparent conductive oxide (in this work used as a front and back contact), that has generated results, of excellent interna¬tional scientific reception, whose applications go beyond the scope of thin film photovoltaic technologies based on amorphous silicon. Moreover, in this Thesis, with the development of the mentioned goal, differ¬ent techniques of analysis of laser processes have been fine-tuned, basing the same in advanced methods for material characterization (like the combined use of EDX Analysis and Confocal Laser Scanning Microscopy) that can be presented as true breakthroughs in the development of specific techniques for characterization in the study of laser processes of selective ablation of materials in thin film technologies, processes that not only have impact in the photovoltaic field, but also in those of microelectronics, biotechnology, micro-fabrication, etc. As an additional outcome, part of the results of this work has been suc¬cessfully applied, by the investigation group to which the author belongs, to the development of processes of enormous interest within other photo¬voltaic technologies, such as the standard technologies on amorphous silicon over glass in superstrate configuration or the processing of thin layers in conventional technologies using crystalline silicon. Lastly, it is important to mention that this work has been possible thanks to the close cooperation between the Centro L´aser of the UPM, in which the author develops her work, and the Grupo de Silicio Depositado of Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol´ogicas, CIEMAT, which, along with the Grupo de Energ´ıa Fotovoltaica of Univer¬sidad de Barcelona, has prepared the largest part of the samples utilized in this study. Such collaborations have been carried out in the context of several projects of applied investigation with public funding, like Proyecto Singular Estrat´egico PSE-MICROSIL08 (PSE-120000-2006-6), Proyecto IN-NDISOL (IPT-420000-2010-6), both funded by the European Regional De¬velopment Fund (ERDF), ”Una manera de hacer Europa” and MICINN, and the projects of Plan Nacional AMIC (ENE2010-21384-C04-02) and ´ CLASICO (ENE2007-6772-C04-04), whose funds have enabled the devel-opment of large part of this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Algunas taquicardias ventriculares (TV) posinfarto se localizan en el epicardio. La identificación de diferencias en el sustrato de las TV endocárdicas y epicárdicas permitiría definir una mejor estrategia de ablación.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio de una secuencia de procesos basados en la tecnología láser y ejecutados en dispositivos fotovoltaicos, que son imprescindibles para el desarrollo en general de las tecnologías fotovoltaicas basadas en lámina delgada y, en particular, de aquellas que utilizan silicio amorfo como absorbente, así como en aplicaciones posteriores de estas tecnologías de alto valor añadido como es la integración arquitectónica de este tipo de dispositivos. En gran parte de las tecnologías FV de lámina delgada, y muy particularmente en la de silicio amorfo, el material se deposita sobre un substrato en un área lo suficientemente grande para que se requiera de un proceso de subdivisión del dispositivo en células de tamaño adecuado, y su posterior conexión en serie para garantizar las figuras eléctricas nominales del dispositivo. Este proceso se ha desarrollado industrialmente hace años, pero no ha habido un esfuerzo científico asociado que permitiera conocer en profundidad los efectos que los procesos en si mismos tiene de forma individualizada sobre los materiales que componen el dispositivo y sus características finales. Este trabajo, desarrollado durante años en el Centro Láser de la UPM, en estrecha colaboración con Centro de Investigaciones Energéticas y Medioambientales (CIEMAT), la Universidad de Barcelona (UB), y la Universidad Politécnica de Cataluña (UPC), se centra justamente en un estudio detallado de dichos procesos, denominados habitualmente P1, P2, P3 y P4 atendiendo al orden en el que se realizan en el dispositivo. Este estudio incluye tanto la parametrización de los procesos, el análisis del efecto que los mismos producen sobre los materiales que componen el dispositivo y su comportamiento fotoeléctrico final, así como la evaluación del potencial uso de fuentes láser de última generación (ultrarrápidas) frente al estándar industrial en la actualidad que es el empleo de fuentes láser convencionales de ancho temporal en el rango de los nanosegundos. En concreto se ha estudiado en detalle las ventajas y limitaciones del uso de sistemas con diferentes rangos espectrales (IR, VIS y UV) y temporales (nanosegundos y picosegundos) para diferentes tipos de configuraciones y disposiciones tecnológicas (entendiendo por estas las habituales configuraciones en substrato y superestrato de este tipo de dispositivos). La caracterización individual de los procesos fue realizada primeramente en células de laboratorio específicamente diseñadas, abriendo nuevos planteamientos y conceptos originales para la mejora de los procesos láser de interconexión y posibilitando el empleo y desarrollo de técnicas y métodos avanzados de caracterización para el estudio de los procesos de ablación en las distintas láminas que conforman la estructura de los dispositivos fotovoltaicos, por lo que se considera que este trabajo ha propuesto una metodología completamente original, y que se ha demostrado efectiva, en este ámbito. Por último el trabajo aborda un tema de particular interés, como es el posible uso de los procesos desarrollados, no para construir los módulos fotovoltaicos en sí, sino para personalizarlos en forma y efectos visuales para potenciar su uso mediante elementos integrables arquitectónicamente, lo que es un ámbito de gran potencial de desarrollo futuro de las tecnologías fotovoltaicas de lámina delgada. En concreto se presentan estudios de fabricación de dispositivos integrables arquitectónicamente y plenamente funcionales no solo en dispositivos de silicio amorfo con efectos de transparencias y generación de formas libres, si no que también se incluye la posibilidad de hacer tales dispositivos con células de silicio cristalino estándar que es la tecnología fotovoltaica de mayor presencia en mercado. Es importante, además, resaltar que la realización de este trabajo ha sido posible gracias a la financiación obtenida con dos proyectos de investigación aplicada, MICROSIL (PSE-120000-2008-1) e INNDISOL (IPT-420000-2019-6), y los correspondientes al Plan Nacional de I+D+I financiados por el ministerio de Ciencia e Innovación y el Ministerio de Economía y Competitividad: CLÁSICO (ENE 2007- 67742-C04-04) y AMIC ENE2010-21384-C04-02. De hecho, y en el marco de estos proyectos, los resultados de este trabajo han ayudado a conseguir algunos de los hitos más importantes de la tecnología fotovoltaica en nuestro país en los últimos años, como fue en el marco de MICROSIL la fabricación del primer módulo de silicio amorfo con tecnología íntegramente española (hecho en colaboración con el CIEMAT), o la fabricación de los dispositivos para integración arquitectónica con geometrías libres que se describen en esta Tesis y que fueron parte de los desarrollos del proyecto INNDISOL. ABSTRACT This thesis focuses on the study of a sequence of laser-based technology and processes executed in photovoltaic devices, which are essential for the overall development of photovoltaic technologies based on thin film and, in particular, those using amorphous silicon as absorbent and subsequent applications of these technologies with high added value such as the architectural integration of such devices. In much of the PV thin film technologies, and particularly in the amorphous silicon material is deposited on a substrate in an area large enough so that it requires a process of subdivision of the device in cells of appropriate size, and subsequent serial connection to ensure nominal device power figures. This process has been industrially developed years ago, but there has been an associate scientific effort that would learn more about the effects that the processes themselves have either individually on the materials that make up the device and its final characteristics. This work, developed over years in the Laser Center of the UPM, in close collaboration with Centre for Energy and Environmental Research (CIEMAT), the University of Barcelona (UB) and the Polytechnic University of Catalonia (UPC)., Focuses precisely in a detailed study of these processes, usually they called P1, P2, P3 and P4 according to the order in which they perform on the device. This study includes both the parameters of the processes, the analysis of the effect they produce on the materials making up the device and its final photoelectric behavior as well as the potential use of EVALUATION of next-generation laser sources (ultrafast) versus standard industry today is the use of conventional laser sources temporal width in the range of nanoseconds. In particular we have studied in detail the advantages and limitations of using systems with different spectral ranges (IR, UV and VIS) and time (nanosecond and picosecond) for different configurations and technological provisions (meaning these typical configurations in substrate and superstrate such devices). Individual characterization of the processes was conducted primarily in laboratory cells specifically designed, opening new approaches and original concepts for improving laser interconnection processes and enabling the use and development of advanced techniques and characterization methods for studying the processes ablation in the different sheets making up the structure of the photovoltaic devices, so it is considered that this work has proposed a completely original methodology, which has proven effective in this area. Finally, the paper addresses a topic of particular interest, as is the possible use of lso developed processes, not to build the photovoltaic modules themselves but to customize fit and visual effects to enhance their use by integrated architectural elements, which is an area of great potential for future development of thin film photovoltaic technologies. Specifically studies manufacture of integrated architecturally and fully functional not only in amorphous silicon devices with transparency effects and generating freeform devices occur, if not also include the ability to make such devices with cells of standard crystalline silicon photovoltaic technology is more visible in the market. It is also important to note that the completion of this work has been possible thanks to the financing obtained with two applied research projects, Microsil (PSE-120000- 2008-1) and INNDISOL (IPT-420000-2019-6), and those for the National R & D funded by the Ministry of Science and Innovation and the Ministry of Economy and Competitiveness: CLASSIC (ENE 2007-67742-C04-04) and AMIC ENE2010-21384-C04- 02. In fact, within the framework of these projects, the results of this work have helped get some of the most important milestones of photovoltaic technology in our country in recent years, as it was under Microsil making the first module Amorphous silicon technology with entirely Spanish (made in collaboration with CIEMAT), or the manufacture of devices for architectural integration with free geometries that are described in this thesis and that were part of the project Inndisol developments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(SPA) Introducción: los medios de fijación a la piel de un catéter venoso periférico, de un catéter venoso central o de un catéter arterial central presentan los siguientes graves inconvenientes: ser la sede de infecciones a nivel del lugar de la punción, provocar una saturación de la zona anatómica, la cual resulta muy difícil de soportar e incómodo para el paciente portador, y suponer un riesgo para el personal de enfermería cuando se usan hilos de sutura para fijar el soporte del catéter. Objetivo: por lo anteriormente expuesto, se ha detecta- do la necesidad de diseñar un dispositivo que reduzca la complejidad y aparatosidad de los sistemas conocidos y empleados en la actualidad, favoreciendo la asepsia y la movilidad del paciente. Método: el desarrollo presentado en este artículo se refie- re a un sistema mecánico de fijación, cierre y acoplamiento para catéter de perfusión intravenosa. El sistema dispone de una pieza circular de pequeño espesor con al menos dos orificios para su fijación subcutánea, centralmente de uno o más conductos para acoplar lúmenes, y de una parte cilín- drica hueca que sobresale a uno de los lados, exteriormente roscada e interiormente lisa con un tetón de posición. Para uso domiciliario se dispone de un tapón de estanqueidad con uno o más tubos de pequeño diámetro que se acoplan en los orificios para lúmenes, una ranura de posición, un tirador y un tapón roscado ciego para el cierre hermético con la parte roscada. Para uso hospitalario se dispone de un tapón intermedio con una o más entradas para lúmenes, así como de un tapón roscado hueco que permite su acopla- miento hermético con la parte roscada. Resultados: el desarrollo descrito en este artículo va a ser utilizado en dos ambientes: ambiente domiciliario y ambiente hospitalario. Además, reduce el riesgo de infec- ción y saturación de la zona anatómica de los pacientes en los que se realiza la punción cutánea en la que se fijan catéteres venosos periféricos, catéteres venosos centrales o catéteres arteriales centrales. (ENG) Introduction: skin fixing devices in peripheral, central or arterial catheters have several important drawbacks: site infection, stacking of material in the anatomical area which is very annoying for the patient and medical staff risk when fixating stitches are used. Objective: to develop a fixing device that simplifies presently used systems, favoring asepsis and motility. Methods: the device herein described is composed by a mechanical fixation, a closing system and coupling for intravenous catheters. The system has a thin circular pie- ce with at least two holes for subcutaneous fixation, one or several conducts for lumina and a hollow cylindrical part in one side, screwed exteriorly and flat inside, with an oriented protuberance. A watertight plug with one or several thin tubes that adapt to the lumina, a positional slot, a handle and a solid screwed tap for perfect closure are available for at home use. An intermediate plug with one or several lumina and a screwed hollow plug are pro- vided for in hospital use. Results: the above described device is intended to be used in two settings: in hospital and at home. It is su- pposed to reduce the risk of infection and stacking of the anatomical site where cutaneo us puncture with fixation of peripheral, central or arterial catheters is performed.