4 resultados para A priori

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se ha desarrollado una herramienta informática con el fin de simular la observación de redes de control dimensional, bien por técnicas clásicas o GNSS. El objetivo de dicha simulación es conocer, a priori, la precisión arrojada por una red en función de su geometría, de las características del instrumental empleado y la metodología de observación llevada a cabo. De este modo se pretende, basándose en estos datos, poder actuar convenientemente para optimizar en la mayor medida posible su diseño.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se ha desarrollado una herramienta informática con el fin de simular la observación de redes de control dimensional, bien por técnicas clásicas o GNSS. El objetivo de dicha simulación es conocer, a priori, la precisión arrojada por una red en función de su geometría, de las características del instrumental empleado y la metodología de observación llevada a cabo. De este modo se pretende, basándose en estos datos, poder actuar convenientemente para optimizar en la mayor medida posible su diseño.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Boundary Element Method (BEM) is a discretisation technique for solving partial differential equations, which offers, for certain problems, important advantages over domain techniques. Despite the high CPU time reduction that can be achieved, some 3D problems remain today untreatable because the extremely large number of degrees of freedom—dof—involved in the boundary description. Model reduction seems to be an appealing choice for both, accurate and efficient numerical simulations. However, in the BEM the reduction in the number of degrees of freedom does not imply a significant reduction in the CPU time, because in this technique the more important part of the computing time is spent in the construction of the discrete system of equations. In this way, a reduction also in the number of weighting functions, seems to be a key point to render efficient boundary element simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show how to accurately perform a quasi-a priori estimation of the truncation error of steady-state solutions computed by a discontinuous Galerkin spectral element method. We estimate the spatial truncation error using the ?-estimation procedure. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, we use non time-converged solutions on one grid with different polynomial orders. The quasi-a priori approach estimates the error while the residual of the time-iterative method is not negligible. Furthermore, the method permits one to decouple the surface and the volume contributions of the truncation error, and provides information about the anisotropy of the solution as well as its rate of convergence in polynomial order. First, we focus on the analysis of one dimensional scalar conservation laws to examine the accuracy of the estimate. Then, we extend the analysis to two dimensional problems. We demonstrate that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.