4 resultados para 57-438B
em Universidad Politécnica de Madrid
Resumo:
Análisis arquitectónico de la obra edificatoria y explicación de los procesos de generación de ésta
Resumo:
The availability of suitable laser sources is one of the main challenges in future space missions for accurate measurement of atmospheric CO2. The main objective of the European project BRITESPACE is to demonstrate the feasibility of an all-semiconductor laser source to be used as a space-borne laser transmitter in an Integrated Path Differential Absorption (IPDA) lidar system. We present here the proposed transmitter and system architectures, the initial device design and the results of the simulations performed in order to estimate the source requirements in terms of power, beam quality, and spectral properties to achieve the required measurement accuracy. The laser transmitter is based on two InGaAsP/InP monolithic Master Oscillator Power Amplifiers (MOPAs), providing the ON and OFF wavelengths close to the selected absorption line around 1.57 µm. Each MOPA consists of a frequency stabilized Distributed Feedback (DFB) master oscillator, a modulator section, and a tapered semiconductor amplifier optimized to maximize the optical output power. The design of the space-compliant laser module includes the beam forming optics and the thermoelectric coolers.The proposed system replaces the conventional pulsed source with a modulated continuous wave source using the Random Modulation-Continuous Wave (RM-CW) approach, allowing the designed semiconductor MOPA to be applicable in such applications. The system requirements for obtaining a CO2 retrieval accuracy of 1 ppmv and a spatial resolution of less than 10 meters have been defined. Envelope estimated of the returns indicate that the average power needed is of a few watts and that the main noise source is the ambient noise.
Resumo:
Fully integrated semiconductor master-oscillator power-amplifiers (MOPA) with a tapered power amplifier are attractive sources for applications requiring high brightness. The geometrical design of the tapered amplifier is crucial to achieve the required power and beam quality. In this work we investigate by numerical simulation the role of the geometrical design in the beam quality and in the maximum achievable power. The simulations were performed with a Quasi-3D model which solves the complete steady-state semiconductor and thermal equations combined with a beam propagation method. The results indicate that large devices with wide taper angles produce higher power with better beam quality than smaller area designs, but at expenses of a higher injection current and lower conversion efficiency.
Resumo:
D. Luis Moya, Arquitecto: Dos edificios inéditos de los años 50. Casa en Pedro Valdivia, 8 (1956-57); Nuevo Pabellón para el Colegio del Pilar en la calle Castelló, nº 56 (1959). Madrid