3 resultados para 4BB-SG and ANTSG
em Universidad Politécnica de Madrid
Resumo:
A total of 72 eggs from a group of 100 white laying hens housed in standard cages were analyzed. Thirty-six eggs were retired when the hens had 44 week of age and the other 36 eggs were retired eight weeks afterwards. Each group of 36 eggs was radomly divided in three groups of 12 eggs. First group was analyzed at once (storage system C); second one was kept during one week in the refrigerator (5ºC) (storage system R), and third group were kept also one week but on ambient temperature (25ºC) (storage system ET). The hen age, egg weight and storage system had not significant (P>0.05) effect on shell thickness. The specific gravity (SG) has a positive relation with shell quality. The egg class and storage system significantly (P<0,05) affected to SG, while no influence of bird age on this variable was observed. The yolk color increased with hen age but storage system had not effect on this variable. The increase of the hen age and the R and AT storage systems significantly (P<0.05) reduced albumen height (H) and the interaction hen age x storage system was significant (P<0.025) for this variable. The reduction of the H due to R and ET storage systems was higher in the eggs from hens with 52 weeks of age than in those from hens with 44 weeks of age. The Haugh units (HU) was significantly (P<0.05) affected by hen age, egg class and storage system. The hen age increase reduced HU and the R and ET eggs had lower HU than C eggs. It is concluded that the bird age and storage system with high temperatures reduced the egg quality.
Resumo:
Steam Generator Tube Rupture (SGTR) sequences in Pressurized Water Reactors are known to be one of the most demanding transients for the operating crew. SGTR are a special kind of transient as they could lead to radiological releases without core damage or containment failure, as they can constitute a direct path from the reactor coolant system to the environment. The first methodology used to perform the Deterministic Safety Analysis (DSA) of a SGTR did not credit the operator action for the first 30 min of the transient, assuming that the operating crew was able to stop the primary to secondary leakage within that period of time. However, the different real SGTR accident cases happened in the USA and over the world demonstrated that the operators usually take more than 30 min to stop the leakage in actual sequences. Some methodologies were raised to overcome that fact, considering operator actions from the beginning of the transient, as it is done in Probabilistic Safety Analysis. This paper presents the results of comparing different assumptions regarding the single failure criteria and the operator action taken from the most common methodologies included in the different Deterministic Safety Analysis. One single failure criteria that has not been analysed previously in the literature is proposed and analysed in this paper too. The comparison is done with a PWR Westinghouse three loop model in TRACE code (Almaraz NPP) with best estimate assumptions but including deterministic hypothesis such as single failure criteria or loss of offsite power. The behaviour of the reactor is quite diverse depending on the different assumptions made regarding the operator actions. On the other hand, although there are high conservatisms included in the hypothesis, as the single failure criteria, all the results are quite far from the regulatory limits. In addition, some improvements to the Emergency Operating Procedures to minimize the offsite release from the damaged SG in case of a SGTR are outlined taking into account the offsite dose sensitivity results.
Resumo:
Continuous and long-pulse lasers have been extensively used for the forming of metal sheets for macroscopic mechanical applications. However, for the manufacturing of Micro-Mechanical Systems (MMS), the applicability of such type of lasers is limited by the long relaxation time of the thermal fields responsible for the forming phenomena. As a consequence, the final sheet deformation state is attained only after a certain time, what makes the generated internal residual stress fields more dependent on ambient conditions and might difficult the subsequent assembly process. The use of short pulse (ns) lasers provides a suitable parameter matching for the laser forming of an important range of sheet components used in MEMS. The short interaction time scale required for the predominantly mechanic (shock) induction of deformation residual stresses allows the successful processing of components in a medium range of miniaturization (particularly important according to its frequent use in such systems). In the present paper, Laser Shock Micro-Forming (LSμF) is presented as an emerging technique for Microsystems parts shaping and adjustment along with a discussion on its physical foundations and practical implementation possibilities developed by the authors.