4 resultados para 3319 Tecnología naval

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El período de la Historia comprendido entre 1570 y 1620 nos ha dejado un importante conjunto de documentos relacionados con la construcción naval en la Península Ibérica. En una época convulsa en la que los reinos de España y Portugal se aglutinaron bajo una misma Corona, surgen una serie de manuscritos, libros y leyes que reflejan la creciente preocupación de la sociedad por el tema naval. Entre sus páginas encontramos las descripciones del proceso constructivo de los buques que sus autores consideraban más significativos para las demandas que se planteaban en ese momento. Este proceso que combinaba generación de formas y construcción del buque provenía de una secular tradición nacida en el Mediterráneo. Mediante reglas geométricas sencillas, el constructor naval trazaba las secciones centrales y el perfil de la nao, quedando los extremos de la misma (hasta más de la mitad de la eslora) a su buen hacer y experiencia. Las herramientas informáticas de generación de superficies mediante NURBs (Non- Uniform Rational B-spline) permiten reconstruir las formas de los navíos reproduciendo con fiabilidad las carenas de los mismos a partir de los documentos de la época. Mediante un estudio detallado de interpretación de los textos y transcribiendo los procesos, llegamos a obtener con un buen grado de precisión las carenas de los buques descritos en sus páginas. A partir de ahí y mediante el análisis cualitativo y cuantitativo de los parámetros obtenidos es posible valorar si las soluciones representadas por los barcos respondían a las preguntas planteadas por sus autores , la influencia de factores externos a la construcción naval tales como las regulaciones del Estado o identificar su relación con el germen y la expansión de la teoría que ha determinado los efectos de la Ciencia en la Arquitectura Naval. Comenzando por la nao veneciana de 1550, heredera de la secular tradición constructiva mediterránea, hasta llegar a las Reales Ordenanzas promulgadas en 1618, se reproducen hasta nueve carenas a partir de otros tantos documentos, se dibujan sus planos de formas y se exportan para su análisis hidrostático. El trabajo requiere la realización de otros estudios en paralelo necesarios para entender aquellos factores que formaron parte del desarrollo tecnológico naval como son, las unidades de medida en uso en los astilleros, los distintos sistemas de arqueo impuestos por la Corona y la representación de los diferentes instrumentos geométricos de modificación de los parámetros de diseño. A lo largo del trabajo se dan respuesta a interrogantes planteados por la arqueología en relación con el desarrollo de la arquitectura naval poniendo en evidencia que durante este período quedaron establecidos los fundamentos teórico-prácticos de lo que más adelante se convirtió en la ciencia de la ingeniería naval y se plantean nuevos retos para aquellos que deseen continuar la apasionante tarea de la investigación científica de nuestra historia. ABSTRACT The period of the History comprised between 1570 and 1620 has left an important set of shipbuilding documents in the Iberian Peninsula. In a turbulent time in which the kingdoms of Spain and Portugal were ruled under the same Crown, manuscripts, books and laws that reflect the growing concern of society for the naval theme arose. We found among their pages shipbuilding process descriptions of the more relevant vessels that responded to claims that arose at that time. This process brought together hull generation and shipbuilding and came from a secular tradition born in the Mediterranean. By means of simple geometric rules, the shipbuilder traced the central sections and profile of the ship, leaving the ends thereof (almost half of the length) to its good performance and experience. 3D computer modelling software by NURBs (Non-Uniform Rational B-spline) surfaces helps to reconstruct ships hulls from contemporary documents. Through a detailed texts interpretation and transcription processes, we manage to reach with a good degree of accuracy the ship hulls described in its pages. From there and through qualitative and quantitative analysis of the parameters obtained we can assess whether the solutions represented by ships gave response to the questions raised by the authors, the influence of external factors such as shipbuilding state regulations or identify their relationship to the origin and expansion of the theory that has determined the effects of Science in Naval Architecture. From the 1550 Venetian nao, inheritor of the secular Mediterranean building tradition, to the Royal Ordinances enacted in 1618, as nine hulls are reproduced, their line drawings are traced and exported for analysis hydrostatic. Further studies are needed to understand the factors that were part of shipbuilding technology development as the units of measure in use in shipyards, the different official regulations for calculating ship tonnage and the different geometric instruments to amend the design parameters. The work gives response to questions raised by archaeology in relation to the development of naval architecture highlighting that during this period were established the theoretical and practical foundations of what later became the science of naval engineering and raising new challenges for those wishing to continue the exciting task of scientific research of our History.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la situación actual, tanto las posibilidades de contratar como los resultados económicos de un astillero, dependen de su capacidad para construir un buque en el plazo mas corto posible. Dentro de los trabajos de diseño y construcción de de un buque el trabajo de tuberías ha sido el que tradicionalmente ha condicionado los plazos de construcción. En este estudio se considerara que se han tenido en cuenta los criterios necesarios para que las instalaciones del buque funcionen correctamente y se verá como los sistemas de diseño influyen en el coste y plazo del buque y, por tanto, en la productividad del astillero. Se estudian los distintos procesos de diseño, fabricación y montaje de tuberías, la evolución de estos procesos a lo largo del tiempo, los módulos de armamento que se realizan en los astilleros, los modelos de cámara de máquinas, y los sistemas de ayuda al diseño por ordenador. El autor, en su puesto de Jefe de la Oficina Tecnológica de la Factoría de Sevilla de Astilleros Españoles en los últimos 12 años, ha tomado parte activa en esta evolución, formando parte de un equipo que ha situado a este astillero entre los mas avanzarlos de Europa. Todo lo anterior sirve de base para la segunda parte de este estudio, donde se abordan las que, en opinión del autor, son las nuevas tendencias en el diseño de tuberías en la construcción naval. V Integración del CAD/CAM o CIM : CAD = computer aided design o diseño asistido por ordenador, CAM = computer aided manufacturing o fabricación asistida por ordenador, CIM = computer integrated manufacturing o fabricación integrada por ordenador. Se estudia la integración de los procesos de diseño con el resto de los procesos de gestión y de producción de un astillero, proponiéndose un modelo de cómo el autor ve esta integración. Se comenta la actual tendencia a pasar de las automatizaciones duras con maquinas especializadas para cada proceso, a las automatizaciones blandas en las que un robot puede realizar distintos procesos modificando su programación. Se estudian las nuevas posibilidades de la normal i zacio'n, de los planos parametrizados y de la tecnología de grupos aportando algunos ejemplos. Se estudia también como los procesos anteriores conducirán a una optimización del producto en sí, es decir a conseguir mejores buques. En las conclusiones destacamos como el camino que tienen los países desarrollados, como el nuestro, para mantener una industria competitiva de construcción naval va por la mecanización de los procesos constructivos siguiendo las tendencias anteriores y obteniendo buques optimizados. vi SUMMARY Under the present situation the possibilities to contract and the economical results of a Shipyard depend on its capacity to build a ship within the shortest time. i Within the works of design and construction of a ship, piping work has traditionally conditioned the construction time. In this study it shall be considered that the necessary criteria for the ship installations to operate correctly have been taken into account and it shall be noticed how the design systems influence on the cost and time of a ship and therefore on the Shipyard's productivity. Studies are made of different design processes, manufacturing and installation of piping, evolution of these processes along the time, outfitting modules made in the Shipyard, engine room models and computerized design aid systems. The author, in his post of Chief of the Technological Office of Sevilla Shipyard of Astilleros Españoles for the last 12 years, has taken an active part in this evolution, making part of a team which has placed this Shipyard among the most advanced in Europe. All of the above is used for the second part of this study, whereby an approach is made to those who, in the author's opinion, are the new trends in the piping design of shipbuilding. vii Integration of CAD/CAM or CIM: CAD = computer aided design, CAM = computer aided manufacturing, CIM = computer integrated manufacturing. i A study is made of the integration of design processes with the remaining step and production Shipyard processes, proposing a model of how the author views this integration. Comments are made on the present trend to go from hard automations with specialized machines for each process to soft automations, in which a robot can carry out different processes modifying its programmes. Studies are made of: New possibility of standardization, parametrized drawings and group technology, bringing some examples. It is also studied how the above processes shall lead to optimize the product itself, that is, to obtain better ships. In the conclusions we stand out how the way of developed countries (as ours) to maintain a competitive shipbuilding industry is by computerizing constructive processes, following the above trends and obtaining better ships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El proceso de soldadura por láser desarrollado en los últimos años ha puesto de manifiesto las posibilidades de aplicación de esta tecnología en diferentes sectores productivos, principalmente en la industria automovilística, en la cual se han demostrado sus ventajas en términos de productividad, eficiencia y calidad. El uso de la tecnología láser, ya sea híbrida o pura, reduce el input térmico al limitar la zona afectada por el calor, sin crear deformaciones y, por tanto, disminuye los re-trabajos post-soldadura necesarios para eliminarlas. Asimismo, se aumenta la velocidad de soldadura, incrementando la productividad y calidad de las uniones. En la última década, el uso de láseres híbridos, (láser + arco) de gran potencia de Neodimio YAG, (Nd: YAG) ha sido cada vez más importante. La instalación de este tipo de fuentes de láser sólido de gran potencia ha sido posible en construcción naval debido a sus ventajas con respecto a las instalaciones de láser de C02 existentes en los astilleros que actualmente utilizan esta tecnología. Los láseres de C02 están caracterizados por su gran potencia y la transmisión del haz a través de espejos. En el caso de las fuentes de Nd:YAG, debido a la longitud de onda a la cual se genera el haz láser, su transmisión pueden ser realizada a través de fibra óptica , haciendo posible la utilización del cabezal láser a gran distancia de la fuente, aparte de la alternativa de integrar el cabezal en unidades robotizadas. El proceso láser distribuye el calor aportado de manera uniforme. Las características mecánicas de dichas uniones ponen de manifiesto la adecuación de la soldadura por láser para su uso en construcción naval, cumpliendo los requerimientos exigidos por las Sociedades de Clasificación. La eficiencia energética de los láseres de C02, con porcentajes superiores al 20%, aparte de las ya estudiadas técnicas de su instalación constituyen las razones por las cuales este tipo de láser es el más usado en el ámbito industrial. El láser de gran potencia de Nd: YAG está presente en el mercado desde hace poco tiempo, y por tanto, su precio es relativamente mayor que el de C02, siendo sus costes de mantenimiento, tanto de lámparas como de diodos necesarios para el bombeo del sólido, igualmente mayores que en el caso del C02. En cambio, el efecto de absorción de parte de la energía en el plasma generado durante el proceso no se produce en el caso del láser de Nd: YAG, utilizando parte de esa energía en estabilizar el arco, siendo necesaria menos potencia de la fuente, reduciendo el coste de la inversión. En función de la aplicación industrial, se deberá realizar el análisis de viabilidad económica correspondiente. Dependiendo de la potencia de la fuente y del tipo de láser utilizado, y por tanto de la longitud de onda a la que se propaga la radiación electromagnética, pueden existen riesgos para la salud. El láser de neodimio se propaga en una longitud de onda, relativamente cercana al rango visible, en la cual se pueden producir daños en los ojos de los operadores. Se deberán establecer las medidas preventivas para evitar los riesgos a los que están expuestos dichos operadores en la utilización de este tipo de energía. La utilización del láser de neodimio: YAG ofrece posibilidades de utilización en construcción naval económicamente rentables, debido su productividad y las buenas características mecánicas de las uniones. Abstract The laser welding process development of the last years shows broad application possibilities in many sectors of industry, mostly in automobile production. The advantages of the laser beam process produce higher productivity, increasing the quality and thermal efficiency. Laser technology, arc-hybrid or pure laser welding, reduces thermal input and thus a smaller heat-affected zone at the work piece. This means less weldment distortion which reduces the amount of subsequent post-weld straightening work that needs to be done. A higher welding speed is achieved by use of the arc and the laser beam, increasing productivity and quality of the joining process. In the last decade use of hybrid technology (laser-GMA hybrid method) with high power sources Nd:YAG lasers, gained in importance. The installation of this type of higher power solid state laser is possible in shipbuilding industrial applications due to its advantages compare with the C02 laser sources installed in the shipyards which use this technology. C02 lasers are characterised by high power output and its beam guidance is via inelastic system of mirrors. In the case of Nd:YAG laser, due to its wavelength, the laser beam can be led by means of a flexible optical fibre even across large distances, which allows three dimensional welding jobs by using of robots. Laser beam welding is a process during which the heat is transferred to the welded material uniformly and the features of the process fulfilled the requirements by Classification Societies. So that, its application to the shipbuilding industry should be possible. The high quantum efficiency of C02 laser, which enabled efficiency factors up to 20%, and relative simple technical possibilities of implementation are the reasons for the fact that it is the most important laser in industrial material machining. High power Nd: YAG laser is established on the market since short time, so that its price is relatively high compared with the C02 laser source and its maintenance cost, lamp or diode pumped solid state laser, is also higher than in the case of C02 lasers. Nevertheless effect of plasma shielding does not exist with Nd:YAG lasers, so that for the gas-shielding welding process the optimal gases can be used regarding arc stability, thus power source are saved and the costs can be optimised. Each industrial application carried out needs its cost efficiency analysis. Depending on the power output and laser type, the dangerousness of reflected irradiation, which even in some meters distance, affects for the healthy operators. For the YAG laser process safety arrangements must be set up in order to avoid the laser radiation being absorbed by the human eye. Due to its wavelength of radiation, being relatively close to the visible range, severe damage to the retina of the eye is possible if sufficient precautions are not taken. Safety aspects are of vital importance to be able to shield the operator as well as other personal. The use of Nd:YAG lasers offers interesting and economically attractive applications in shipbuilding industry. Higher joining rates are possible, and very good mechanical/technological parameters can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los retos y oportunidades a los que se enfrentan las organizaciones y administraciones de las primeras décadas del siglo XXI se caracterizan por una serie de fuerzas perturbadoras como la globalización, el avance de las tecnologías emergentes y el desequilibrio económico, que están actuando como impulsores de la transformación del mercado. La acción conjunta de estos factores está obligando a todas las empresas industriales a tener que trabajar con mayores y más exigentes niveles de productividad planteándose continuamente como mejorar y lograr satisfacer los requerimientos de los clientes. De esta situación surge la necesidad de volver a plantearse de nuevo ¿quién es el cliente?, ¿qué valora el cliente? y ¿cómo se pueden generan beneficios sostenibles? La aplicación de esta reflexión a la industria naval militar marca los objetivos a los que esta tesis doctoral busca dar respuesta. El primer objetivo, de carácter general, consiste en la definición de un modelo de negocio sostenible para la industria naval militar del 2025 que se adapte a los requisitos del cliente y al nuevo escenario político, económico, social, tecnológico y ambiental que rodea esta industria. El segundo objetivo, consecuencia del modelo general, trata de desarrollar una metodología para ejecutar programas de apoyo al ciclo de vida del “buque militar”. La investigación se estructura en cuatro partes: en la primera se justifica, por un lado, la necesidad del cambio de modelo y por otro se identifican los factores estructurantes para la definición del modelo. La segunda parte revisa la literatura existente sobre uno de los aspectos básicos para el nuevo modelo, el concepto Producto-Servicio. La tercera parte se centra totalmente en la industria naval militar estudiando los aspectos concretos del sector y, en base al trabajo de campo realizado, se identifican los puntos que más valoran las Marinas de Guerra y como estas gestionan al buque militar durante todo su ciclo de vida. Por último se presentan los principios del modelo propuesto y se desarrollan los pilares básicos para la ejecución de proyectos de Apoyo al Ciclo de Vida (ACV). Como resultado de la investigación, el modelo propuesto para la industria naval militar se fundamenta en once principios: 1. El buque militar (producto de alto valor añadido) debe ser diseñado y construido en un astillero del país que desarrolla el programa de defensa. 2. El diseño tiene que estar orientado al valor para el cliente, es decir, se tiene que diseñar el buque militar para que cumpla su misión, eficaz y eficientemente, durante toda su vida operativa, asegurando la seguridad del buque y de las personas y protegiendo el medio ambiente de acuerdo con las regulaciones vigentes. 3. La empresa debe suministrar soluciones integrales de apoyo al ciclo de vida al producto. 4. Desarrollar y mantener las capacidades de integración de sistemas complejos para todo el ciclo de vida del buque militar. 5. Incorporar las tecnologías digitales al producto, a los procesos, a las personas y al propio modelo de negocio. 6. Desarrollar planes de actuación con el cliente domestico a largo plazo. Estos planes tienen que estar basados en tres premisas: (i) deben incluir el ciclo de vida completo, desde la fase de investigación y desarrollo hasta la retirada del buque del servicio; (ii) la demanda debe ser sofisticada, es decir las exigencias del cliente, tanto desde la óptica de producto como de eficiencia, “tiran” del contratista y (iii) permitir el mantenimiento del nivel tecnológico y de las capacidades industriales de la compañía a futuro y posicionarla para que pueda competir en el mercado de exportación. 7. Impulsar el sector militar de exportación mediante una mayor actividad comercial a nivel internacional. 8. Fomentar la multilocalización ya que representa una oportunidad de crecimiento y favorece la exportación posibilitando el suministro de soluciones integrales en el país destino. 9. Reforzar la diplomacia institucional como palanca para la exportación. 10. Potenciar el liderazgo tecnológico tanto en producto como en procesos con políticas activas de I + D+ i. 11. Reforzar la capacidad de financiación con soluciones innovadoras. El segundo objetivo de esta tesis se centra en el desarrollo de soluciones integrales de Apoyo al Ciclo de Vida (ACV). La metodología planteada trata de minimizar la brecha entre capacidades y necesidades a lo largo de la vida operativa del barco. Es decir, el objetivo principal de los programas de ACV es que la unidad conserve durante toda su vida operativa, en términos relativos a las tecnologías existentes, las capacidades equivalentes a las que tendrá cuando entre en servicio. Los ejes de actuación para conseguir que un programa de Apoyo al Ciclo de Vida cumpla su objetivo son: el diseño orientado al valor, la ingeniería de Apoyo al Ciclo de Vida, los proyectos de refresco de tecnología, el mantenimiento Inteligente y los contratos basados en prestaciones. ABSTRACT On the first decades of the 21st century, organizations and administrations face challenges and come across opportunities threatened by a number of disruptive forces such as globalization, the ever-changing emerging technologies and the economic imbalances acting as drivers of the market transformation. This combination of factors is forcing all industrial companies to have more and higher demanding productivity levels, while bearing always in mind how to improve and meet the customer’s requirements. In this situation, we need to question ourselves again: Who is the customer? What does the customer value? And how can we deliver sustainable economic benefits? Considering this matter in a military naval industry framework sets the goals that this thesis intends to achieve. The first general goal is the definition of a new sustainable business model for the 2025 naval industry, adapted to the customer requirements and the new political, economic, social, technological and environmental scenario. And the second goal that arises as a consequence of the general model develops a methodology to implement “warship” through life support programs. The research is divided in four parts: the first one justifies, on the one hand, the need to change the existing model and, on the other, identifies the model structural factors. On the second part, current literature regarding one of the key issues on the new model (the Product-Service concept) is reviewed. Based on field research, the third part focuses entirely on military shipbuilding, analyzing specific key aspects of this field and identifying which of them are valued the most by Navies and how they manage through life cycles of warships. Finally, the foundation of the proposed model is presented and also the basic grounds for implementing a Through Life Support (TLS) program are developed. As a result of this research, the proposed model for the naval industry is based on eleven (11) key principles: 1. The warship (a high added value product) must be designed and built in a shipyard at the country developing the defense program. 2. Design must be customer value oriented, i.e.warship must be designed to effectively fulfill its mission throughout its operational life, ensuring safety at the ship and for the people and protecting the environment in accordance with current regulations. 3. The industry has to provide integrated Through Life Support solutions. 4. Develop and maintain integrated complex systems capabilities for the entire warship life cycle. 5. Introduce the product, processes, people and business model itself to digital technologies. 6. Develop long-term action plans with the domestic customer. These plans must be based on three premises: (i) the complete life cycle must be included, starting from the research and development stage throughout the ship’s disposal; (ii) customer demand has to be sophisticated, i.e. customer requirements, both from the efficiency and product perspective, "attract" the contractor and (iii) technological level and manufacturing capabilities of the company in the future must be maintained and a competitive position on the export market has to be achieved. 7. Promote the military exporting sector through increased international business. 8. Develop contractor multi-location as it entails an opportunity for growth and promote export opportunities providing integrated solutions in the customer's country. 9. Strengthen institutional diplomacy as a lever for export. 10. Promote technological leadership in both product and processes with active R & D & I policies (Research & Development & Innovation) 11. Strengthen financing capacity through innovative solutions. The second goal of this thesis is focused on developing integrated Through Life Support (TLS) solutions. The proposed methodology tries to minimize the gap between needs and capabilities through the ship operational life. It means, the main TLS program objective is to maintain the ship’s performance and capabilities during operational life, in relative terms to current technologies, equivalent to those the ship had when it entered service. The main actions to fulfill the TLS program objectives are: value-oriented design, TLS engineering, technology updating projects, intelligent maintenance and performance based contracts.