1 resultado para 2D Materials
em Universidad Politécnica de Madrid
Resumo:
A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.