10 resultados para 230107 Differential, Difference and Integral Equations
em Universidad Politécnica de Madrid
Resumo:
The physical appearance of granular media suggests the existence of geometrical scale invariance. The paper discuss how this physico-empirical property can be mathematically encoded leading to different generative models: a smooth one encoded by a differential equation and another encoded by an equation coming from a measure theoretical property.
Resumo:
Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.
Resumo:
The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.
Resumo:
The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.
Resumo:
The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [Prog. Theor. Phys. 92 (1994), 939] boundary integrals. The analysis has been carried out by studying the convergence of the first- and second-order differential operators as the smoothing length (that is, the characteristic length on which relies the SPH interpolation) decreases. These differential operators are of fundamental importance for the computation of the viscous drag and the viscous/diffusive terms in the momentum and energy equations. It has been proved that close to the boundaries some of the mirroring techniques leads to intrinsic inaccuracies in the convergence of the differential operators. A consistent formulation has been derived starting from Takeda et al. boundary integrals (see the above reference). This original formulation allows implementing no-slip boundary conditions consistently in many practical applications as viscous flows and diffusion problems.
Resumo:
Hail is a serious concern for agriculture on the Iberian Peninsula. Hailstorms affect crop yield and/or quality to a degree that depends on the crop species and the phenological time. In Europe, Spain is one of the countries that experience relatively high agricultural losses related to hailstorms. It is of high interest to study models that can support calculations of the probabilities of economic losses due to hail damage and of the tendency over time for such losses. Some studies developed in France and the Netherdlands show that the summer mean temperature was highly correlated with a yearly hail severity index developed from hailrelated parameters obtained for insurance purposes. Meanwhile, other studies in the USA point out that a highly significant correlation between both is not possible to find due to high climatic variability. The aim of this work is to test the correlation between average minimum temperatures and hail damage intensity over the Spanish Iberian Peninsula. With this purpose, correlation analyses on both variables were performed for the 47 Spanish provinces (as individuals and single set) and for all crops and four individual crops: grapes, wheat, barley and winter grains. Suitable crop insurance data are available from 1981 until 2007 and based on this period, temperature data were obtained. This study does not confirm the results previously obtained for France and the Netherlands that relate observed hail damage to the average minimum temperature. The reason for this difference and the nature of the cases observed are discussed.
Resumo:
In pressure irrigation-water distribution networks, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of flow rate. In addition, applied water volume is used controlled operating the valve during a calculated time interval, and assuming constant flow rate. In general, a pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Its lecture could be used for refining the water balance but its accuracy must be taken into account. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. The objective of this work is to asses the influence of the performance on the applied volume during the whole irrigation events in a year. The results of the study have been obtained introducing the flow rate into a PRV model. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of the PRV.
Resumo:
En los diseños y desarrollos de ingeniería, antes de comenzar la construcción e implementación de los objetivos de un proyecto, es necesario realizar una serie de análisis previos y simulaciones que corroboren las expectativas de la hipótesis inicial, con el fin de obtener una referencia empírica que satisfaga las condiciones de trabajo o funcionamiento de los objetivos de dicho proyecto. A menudo, los resultados que satisfacen las características deseadas se obtienen mediante la iteración de métodos de ensayo y error. Generalmente, éstos métodos utilizan el mismo procedimiento de análisis con la variación de una serie de parámetros que permiten adaptar una tecnología a la finalidad deseada. Hoy en día se dispone de computadoras potentes, así como algoritmos de resolución matemática que permiten resolver de forma veloz y eficiente diferentes tipos de problemas de cálculo. Resulta interesante el desarrollo de aplicaciones que permiten la resolución de éstos problemas de forma rápida y precisa en el análisis y síntesis de soluciones de ingeniería, especialmente cuando se tratan expresiones similares con variaciones de constantes, dado que se pueden desarrollar instrucciones de resolución con la capacidad de inserción de parámetros que definan el problema. Además, mediante la implementación de un código de acuerdo a la base teórica de una tecnología, se puede lograr un código válido para el estudio de cualquier problema relacionado con dicha tecnología. El desarrollo del presente proyecto pretende implementar la primera fase del simulador de dispositivos ópticos Slabsim, en cual se puede representar la distribución de la energía de una onda electromagnética en frecuencias ópticas guiada a través de una una guía dieléctrica plana, también conocida como slab. Este simulador esta constituido por una interfaz gráfica generada con el entorno de desarrollo de interfaces gráficas de usuario Matlab GUIDE, propiedad de Mathworks©, de forma que su manejo resulte sencillo e intuitivo para la ejecución de simulaciones con un bajo conocimiento de la base teórica de este tipo de estructuras por parte del usuario. De este modo se logra que el ingeniero requiera menor intervalo de tiempo para encontrar una solución que satisfaga los requisitos de un proyecto relacionado con las guías dieléctricas planas, e incluso utilizarlo para una amplia diversidad de objetivos basados en esta tecnología. Uno de los principales objetivos de este proyecto es la resolución de la base teórica de las guías slab a partir de métodos numéricos computacionales, cuyos procedimientos son extrapolables a otros problemas matemáticos y ofrecen al autor una contundente base conceptual de los mismos. Por este motivo, las resoluciones de las ecuaciones diferenciales y características que constituyen los problemas de este tipo de estructuras se realizan por estos medios de cálculo en el núcleo de la aplicación, dado que en algunos casos, no existe la alternativa de uso de expresiones analíticas útiles. ABSTRACT. The first step in engineering design and development is an analysis and simulation process which will successfully corroborate the initial hypothesis that was made and find solutions for a particular. In this way, it is possible to obtain empirical evidence which suitably substantiate the purposes of the project. Commonly, the characteristics to reach a particular target are found through iterative trial and error methods. These kinds of methods are based on the same theoretical analysis but with a variation of some parameters, with the objective to adapt the results for a particular aim. At present, powerful computers and mathematical algorithms are available to solve different kinds of calculation problems in a fast and efficient way. Computing application development is useful as it gives a high level of accurate results for engineering analysis and synthesis in short periods of time. This is more notable in cases where the mathematical expressions on a theoretical base are similar but with small variations of constant values. This is due to the ease of adaptation of the computer programming code into a parameter request system that defines a particular solution on each execution. Additionally, it is possible to code an application suitable to simulate any issue related to the studied technology. The aim of the present project consists of the construction of the first stage of an optoelectronics simulator named Slabsim. Slabism is capable of representing the energetic distribution of a light wave guided in the volume of a slab waveguide. The mentioned simulator is made through the graphic user interface development environment Matlab GUIDE, property of Mathworks©. It is designed for an easy and intuitive management by the user to execute simulations with a low knowledge of the technology theoretical bases. With this software it is possible to achieve several aims related to the slab waveguides by the user in low interval of time. One of the main purposes of this project is the mathematical solving of theoretical bases of slab structures through computing numerical analysis. This is due to the capability of adapting its criterion to other mathematical issues and provides a strong knowledge of its process. Based on these advantages, numerical solving methods are used in the core of the simulator to obtain differential and characteristic equations results that become represented on it.
Resumo:
In this work, a combination of numerical methods applied to thermohydrodynamic lubrication problems with cavitation is presented. It should be emphasized the difficulty of the nonlinear mathematical coupled model involving a free boundary problem, but also the simplicity of the algorithms employed to solve it. So, finite element discretizations for the hydrodynamic and thermal equations combined with upwind techniques for the convection terms and duality methods for nonlinear features are proposed. Additionally, a model describing the movement of the shaft is provided. Considering the shaft as a rigid body this model will consist of an ODE system relating acceleration of the center of gravity and external and pressure loads. The numerical experiments of mechanical stability try to clarify the position of the neutral stability curve. Finally, a rotating machine for ship propulsion involving both axial and radial bearings operating with nonconventional lubricants (seawater to avoid environmental pollution) is analyzed by using laminar and turbulent inertial flows.
Resumo:
Fully integrated semiconductor master-oscillator power-amplifiers (MOPA) with a tapered power amplifier are attractive sources for applications requiring high brightness. The geometrical design of the tapered amplifier is crucial to achieve the required power and beam quality. In this work we investigate by numerical simulation the role of the geometrical design in the beam quality and in the maximum achievable power. The simulations were performed with a Quasi-3D model which solves the complete steady-state semiconductor and thermal equations combined with a beam propagation method. The results indicate that large devices with wide taper angles produce higher power with better beam quality than smaller area designs, but at expenses of a higher injection current and lower conversion efficiency.