10 resultados para 1995_12080748 Optics-10

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory calculated in the design process. Curved tracking trajectory helps to broaden the incident angle?s range significantly. We have chosen an afocal-type structure which aim to direct the parallel rays of large incident angles to parallel output rays. The RMS of the divergence angle of the output rays remains below 1 degree for an incident angular range of ±450. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In SSL general illumination, there is a clear trend to high flux packages with higher efficiency and higher CRI addressed with the use of multiple color chips and phosphors. However, such light sources require the optics provide color mixing, both in the near-field and far-field. This design problem is specially challenging for collimated luminaries, in which diffusers (which dramatically reduce the brightness) cannot be applied without enlarging the exit aperture too much. In this work we present first injection molded prototypes of a novel primary shell-shaped optics that have microlenses on both sides to provide Köhler integration. This shell is design so when it is placed on top of an inhomogeneous multichip Lambertian LED, creates a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with only small increment of the size (about 10-20%, so the average brightness is similar to the brightness of the source). This shell-mixer device is very versatile and permits now to use a lens or a reflector secondary optics to collimate the light as desired, without color separation effects. Experimental measurements have shown optical efficiency of the shell of 95%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lateral moving optics along straight path has already been studied in the past. However, their relative small angular range can be a limitation to potential applications. In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory, which is calculated in the design process. We have chosen an afocal system, which aim to direct the parallel rays of large incident angles to parallel output rays, and we have obtained that the RMS of the divergence angle of the output rays remains below 1 degree within a input angular range of ±45 output. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Concentrated Photovoltaics (CPV) promise relies upon the use of high-efficiency triple-junction solar cells (with proven efficiencies of over 44%) and upon high-performance optics that allow for high concentration concurrent with relaxed manufacturing tolerances (all key elements for low-cost mass production). Additionally, uniform illumination is highly desirable for efficiency and reliability reasons. All of these features have to be achieved with inexpensive optics containing only a few (in general no more than 2) optical elements. In this paper we show that the degrees of freedom using free-forms allow the introduction of multiple functionalities required for CPV with just 2 optical elements, one of which is a Fresnel lens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general view of the present status of optics and related fields in Spain is presented. The main emphasis is on the relation between optics and some emerging areas such as Optical Communications and Nonlinear Optics. Principal activities of the more important groups are summarized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cost, plastic-injected optics mix light from different color LED dies without a significant decrease in average brightness, simplifying luminaire design both optically and electronically. In solid-state lighting, high-flux and high-color rendering index (CRI) light engines may be achieved by arraying and mixing the light from different color dies or phosphors, or a combination of the two, in the LED package. However, these nonhomogeneous sources, when combined with luminaire optics, tend to produce patterns with undesirable artifacts such as spatial and angular nonuniformities and color separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Monge–Ampère (MA) equation arising in illumination design is highly nonlinear so that the convergence of the MA method is strongly determined by the initial design. We address the initial design of the MA method in this paper with the L2 Monge-Kantorovich (LMK) theory, and introduce an efficient approach for finding the optimal mapping of the LMK problem. Three examples, including the beam shaping of collimated beam and point light source, are given to illustrate the potential benefits of the LMK theory in the initial design. The results show the MA method converges more stably and faster with the application of the LMK theory in the initial design.