3 resultados para 19 COMPLEX
em Universidad Politécnica de Madrid
Resumo:
A membrane system is a massive parallel system, which is inspired by the living cells when processing information. As a part of unconventional computing, membrane systems are proven to be effective in solving complex problems. A new factor is introduced. This factor can decide whether a technique is worthwhile being used or not. The use of this factor provides the best chances for selecting the strategy for the rules application phase. Referring to the “best” is in reference to the one that reduces execution time within the membrane system. A pre-analysis of the membrane system determines the P-factor, which in return advises the optimal strategy to use. In particular, this paper compares the use of two strategies based on the P-factor and provides results upon the application of them. The paper concludes that the P-factor is an effective indicator for choosing the right strategy to implement the rules application phase in membrane systems.
Resumo:
We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers.
Resumo:
PREMISE OF THE STUDY: We conducted environmental niche modeling (ENM) of the Brachypodium distachyon s.l. complex, a model group of two diploid annual grasses ( B. distachyon , B. stacei ) and their derived allotetraploid ( B. hybridum) , native to the circum-Mediterranean region. We (1) investigated the ENMs of the three species in their native range based on present and past climate data; (2) identifi ed potential overlapping niches of the diploids and their hybrid across four Quaternary windows; (3) tested whether speciation was associated with niche divergence/conservatism in the complex species; and (4) tested for the potential of the polyploid outperforming the diploids in the native range. M ETHODS: Geo-referenced data, altitude, and 19 climatic variables were used to construct the ENMs. We used paleoclimate niche models to trace the potential existence of ancestral gene fl ow among the hybridizing species of the complex. KEY RESULTS: Brachypodium distachyon grows in higher, cooler, and wetter places, B. stacei in lower, warmer, and drier places, and B. hybridum in places with intermediate climatic features. Brachypodium hybridum had the largest niche overlap with its parent niches, but a similar distribution range and niche breadth. C ONCLUSIONS: Each species had a unique environmental niche though there were multiple niche overlapping areas for the diploids across time, suggesting the potential existence of several hybrid zones during the Pleistocene and the Holocene. No evidence of niche divergence was found, suggesting that species diversifi cation was not driven by ecological speciation but by evolutionary history, though it could be associated to distinct environmental adaptations.