3 resultados para 1179
em Universidad Politécnica de Madrid
Resumo:
Laser material processing is being extensively used in photovoltaic applications for both the fabrication of thin film modules and the enhancement of the crystalline silicon solar cells. The two temperature model for thermal diffusion was numerically solved in this paper. Laser pulses of 1064, 532 or 248 nm with duration of 35, 26 or 10 ns were considered as the thermal source leading to the material ablation. Considering high irradiance levels (108–109 W cm−2), a total absorption of the energy during the ablation process was assumed in the model. The materials analysed in the simulation were aluminium (Al) and silver (Ag), which are commonly used as metallic electrodes in photovoltaic devices. Moreover, thermal diffusion was also simulated for crystalline silicon (c-Si). A similar trend of temperature as a function of depth and time was found for both metals and c-Si regardless of the employed wavelength. For each material, the ablation depth dependence on laser pulse parameters was determined by means of an ablation criterion. Thus, after the laser pulse, the maximum depth for which the total energy stored in the material is equal to the vaporisation enthalpy was considered as the ablation depth. For all cases, the ablation depth increased with the laser pulse fluence and did not exhibit a clear correlation with the radiation wavelength. Finally, the experimental validation of the simulation results was carried out and the ability of the model with the initial hypothesis of total energy absorption to closely fit experimental results was confirmed.
Resumo:
Geographic information technologies (GIT) are essential to many fields of research, such as the preservation and dissemination of cultural heritage buildings, a category which includes traditional underground wine cellars. This article presents a methodology based on research carried out on this type of rural heritage building. The data were acquired using the following sensors: EDM, total station, close-range photogrammetry and laser scanning, and subsequently processed with a specific software which was verified for each case, in order to obtain a satisfactory graphic representation of these underground wine cellars. Two key aspects of this work are the accuracy of the data processing and the visualization of these traditional constructions. The methodology includes an application for geovisualizing these traditional constructions on mobile devices in order to contribute to raising awareness of this unique heritage.
Resumo:
Se designan los lectotipos de dos especies de angiospermas sudamericanas, Laureliopsis philippiana (Looser) Schodde (Athersopermataceae), de Argentina y Chile, y Hennecartia omphalandra Poisson, de Argentina, Paraguay t¡y Brasil.