24 resultados para 1142
em Universidad Politécnica de Madrid
Resumo:
Let D be a link diagram with n crossings, sA and sB be its extreme states and |sAD| (respectively, |sBD|) be the number of simple closed curves that appear when smoothing D according to sA (respectively, sB). We give a general formula for the sum |sAD| + |sBD| for a k-almost alternating diagram D, for any k, characterizing this sum as the number of faces in an appropriate triangulation of an appropriate surface with boundary. When D is dealternator connected, the triangulation is especially simple, yielding |sAD| + |sBD| = n + 2 - 2k. This gives a simple geometric proof of the upper bound of the span of the Jones polynomial for dealternator connected diagrams, a result first obtained by Zhu [On Kauffman brackets, J. Knot Theory Ramifications6(1) (1997) 125–148.]. Another upper bound of the span of the Jones polynomial for dealternator connected and dealternator reduced diagrams, discovered historically first by Adams et al. [Almost alternating links, Topology Appl.46(2) (1992) 151–165.], is obtained as a corollary. As a new application, we prove that the Turaev genus is equal to the number k of dealternator crossings for any dealternator connected diagram
Resumo:
Phenomenal states are generally considered the ultimate sources of intrinsic motivation for autonomous biological agents. In this article, we will address the issue of the necessity of exploiting these states for the design and implementation of robust goal-directed artificial systems. We will provide an analysis of consciousness in terms of a precise definition of how an agent "understands" the informational flows entering the agent and its very own action possibilities. This abstract model of consciousness and understanding will be based in the analysis and evaluation of phenomenal states along potential future trajectories in the state space of the agents. This implies that a potential strategy to follow in order to build autonomous but still customer-useful systems is to embed them with the particular, ad hoc phenomenality that captures the system-external requirements that define the system usefulness from a customer-based, requirements-strict engineering viewpoint.
Resumo:
In fact, much of the attraction of network theory initially stemmed from the fact that many networks seem to exhibit some sort of universality, as most of them belong to one of three classes: random, scale-free and small-world networks. Structural properties have been shown to translate into different important properties of a given system, including efficiency, speed of information processing, vulnerability to various forms of stress, and robustness. For example, scale-free and random topologies were shown to be...
Resumo:
In a previous paper, we proposed an axiomatic model for measuring self-contradiction in the framework of Atanassov fuzzy sets. This way, contradiction measures that are semicontinuous and completely semicontinuous, from both below and above, were defined. Although some examples were given, the problem of finding families of functions satisfying the different axioms remained open. The purpose of this paper is to construct some families of contradiction measures firstly using continuous t-norms and t-conorms, and secondly by means of strong negations. In both cases, we study the properties that they satisfy. These families are then classified according the different kinds of measures presented in the above paper.
Resumo:
The basics of the self-assembled growth of GaN nanorods on Si(111) are reviewed. Morphology differences and optical properties are compared to those of GaN layers grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanorods grown on Si(111) is described. In addition, the inclusion of InGaN quantum disk structures into selfassembled GaN nanorods show clear confinement effects as a function of the quantum disk thickness. In order to overcome the properties dispersion and the intrinsic inhomogeneous nature of the self-assembled growth, the selective area growth of GaN nanorods on both, c-plane and a-plane GaN on sapphire templates, is addressed, with special emphasis on optical quality and morphology differences. The analysis of the optical emission from a single InGaN quantum disk is shown for both polar and non-polar nanorod orientations
Resumo:
The horizontal visibility algorithm was recently introduced as a mapping between time series and networks. The challenge lies in characterizing the structure of time series (and the processes that generated those series) using the powerful tools of graph theory. Recent works have shown that the visibility graphs inherit several degrees of correlations from their associated series, and therefore such graph theoretical characterization is in principle possible. However, both the mathematical grounding of this promising theory and its applications are in its infancy. Following this line, here we address the question of detecting hidden periodicity in series polluted with a certain amount of noise. We first put forward some generic properties of horizontal visibility graphs which allow us to define a (graph theoretical) noise reduction filter. Accordingly, we evaluate its performance for the task of calculating the period of noisy periodic signals, and compare our results with standard time domain (autocorrelation) methods. Finally, potentials, limitations and applications are discussed.
Resumo:
The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse Díaz et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties.
Resumo:
We introduce a new methodology to characterize the role that a given node plays inside the community structure of a complex network. Our method relies on the ability of the links to reduce the number of steps between two nodes in the network, which is measured by the number of shortest paths crossing each link, and its impact on the node proximity. In this way, we use node closeness to quantify the importance of a node inside its community. At the same time, we define a participation coefficient that depends on the shortest paths contained in the links that connect two communities. The combination of both parameters allows to identify the role played by the nodes in the network, following the same guidelines introduced by Guimerà et al. [Guimerà & Amaral, 2005] but, in this case, considering global information about the network. Finally, we give some examples of the hub characterization in real networks and compare our results with the parameters most used in the literature.
Resumo:
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.
Resumo:
We report numerical evidence of the effects of a periodic modulation in the delay time of a delayed dynamical system. By referring to a Mackey-Glass equation and by adding a modula- tion in the delay time, we describe how the solution of the system passes from being chaotic to shadow periodic states. We analyze this transition for both sinusoidal and sawtooth wave mod- ulations, and we give, in the latter case, the relationship between the period of the shadowed orbit and the amplitude of the modulation. Future goals and open questions are highlighted.
Resumo:
The first level data cache un modern processors has become a major consumer of energy due to its increasing size and high frequency access rate. In order to reduce this high energy con sumption, we propose in this paper a straightforward filtering technique based on a highly accurate forwarding predictor. Specifically, a simple structure predicts whether a load instruction will obtain its corresponding data via forwarding from the load-store structure -thus avoiding the data cache access - or if it will be provided by the data cache. This mechanism manages to reduce the data cache energy consumption by an average of 21.5% with a negligible performance penalty of less than 0.1%. Furthermore, in this paper we focus on the cache static energy consumption too by disabling a portin of sets of the L2 associative cache. Overall, when merging both proposals, the combined L1 and L2 total energy consumption is reduced by an average of 29.2% with a performance penalty of just 0.25%. Keywords: Energy consumption; filtering; forwarding predictor; cache hierarchy
Resumo:
Knowledge resource reuse has become a popular approach within the ontology engineering field, mainly because it can speed up the ontology development process, saving time and money and promoting the application of good practices. The NeOn Methodology provides guidelines for reuse. These guidelines include the selection of the most appropriate knowledge resources for reuse in ontology development. This is a complex decision-making problem where different conflicting objectives, like the reuse cost, understandability, integration workload and reliability, have to be taken into account simultaneously. GMAA is a PC-based decision support system based on an additive multi-attribute utility model that is intended to allay the operational difficulties involved in the Decision Analysis methodology. The paper illustrates how it can be applied to select multimedia ontologies for reuse to develop a new ontology in the multimedia domain. It also demonstrates that the sensitivity analyses provided by GMAA are useful tools for making a final recommendation.
Resumo:
We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.
Resumo:
Due to the intensive use of mobile phones for diferent purposes, these devices usually contain condential information which must not be accessed by another person apart from the owner of the device. Furthermore, the new generation phones commonly incorporate an accelerometer which may be used to capture the acceleration signals produced as a result of owner s gait. Nowadays, gait identication in basis of acceleration signals is being considered as a new biometric technique which allows blocking the device when another person is carrying it. Although distance based approaches as Euclidean distance or dynamic time warping have been applied to solve this identication problem, they show di±culties when dealing with gaits at diferent speeds. For this reason, in this paper, a method to extract an average template from instances of the gait at diferent velocities is presented. This method has been tested with the gait signals of 34 subjects while walking at diferent motion speeds (slow, normal and fast) and it has shown to improve the performance of Euclidean distance and classical dynamic time warping.
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.