17 resultados para 040604 Natural Hazards

em Universidad Politécnica de Madrid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenetic zonation) and its magnitude dependence (without using Gutenberg–Richter's law). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation laws have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble) combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hail is a serious concern for agriculture on the Iberian Peninsula. Hailstorms affect crop yield and/or quality to a degree that depends on the crop species and the phenological time. In Europe, Spain is one of the countries that experience relatively high agricultural losses related to hailstorms. It is of high interest to study models that can support calculations of the probabilities of economic losses due to hail damage and of the tendency over time for such losses. Some studies developed in France and the Netherdlands show that the summer mean temperature was highly correlated with a yearly hail severity index developed from hailrelated parameters obtained for insurance purposes. Meanwhile, other studies in the USA point out that a highly significant correlation between both is not possible to find due to high climatic variability. The aim of this work is to test the correlation between average minimum temperatures and hail damage intensity over the Spanish Iberian Peninsula. With this purpose, correlation analyses on both variables were performed for the 47 Spanish provinces (as individuals and single set) and for all crops and four individual crops: grapes, wheat, barley and winter grains. Suitable crop insurance data are available from 1981 until 2007 and based on this period, temperature data were obtained. This study does not confirm the results previously obtained for France and the Netherlands that relate observed hail damage to the average minimum temperature. The reason for this difference and the nature of the cases observed are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of climate change and its relation with evapotranspiration was evaluated in the Duero River Basin (Spain). The study shows possible future situations 50 yr from now from the reference evapotranspiration (ETo). The maximum temperature (Tmax), minimum temperature (Tmin), dew point (Td), wind speed (U) and net radiation (Rn) trends during the 1980–2009 period were obtained and extrapolated with the FAO-56 Penman-Montheith equation to estimate ETo. Changes in stomatal resistance in response to increases in CO2 were also considered. Four scenarios were done, taking the concentration of CO2 and the period analyzed (annual or monthly) into consideration. The scenarios studied showed the changes in ETo as a consequence of the annual and monthly trends in the variables Tmax, Tmin, Td, U and Rn with current and future CO2 concentrations (372 ppm and 550 ppm). The future ETo showed increases between 118 mm (11 %) and 55 mm (5 %) with respect to the current situation of the river basin at 1042 mm. The months most affected by climate change are May, June, July, August and September, which also coincide with the maximum water needs of the basin’s crops

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Opportunities offered by high performance computing provide a significant degree of promise in the enhancement of the performance of real-time flood forecasting systems. In this paper, a real-time framework for probabilistic flood forecasting through data assimilation is presented. The distributed rainfall-runoff real-time interactive basin simulator (RIBS) model is selected to simulate the hydrological process in the basin. Although the RIBS model is deterministic, it is run in a probabilistic way through the results of calibration developed in a previous work performed by the authors that identifies the probability distribution functions that best characterise the most relevant model parameters. Adaptive techniques improve the result of flood forecasts because the model can be adapted to observations in real time as new information is available. The new adaptive forecast model based on genetic programming as a data assimilation technique is compared with the previously developed flood forecast model based on the calibration results. Both models are probabilistic as they generate an ensemble of hydrographs, taking the different uncertainties inherent in any forecast process into account. The Manzanares River basin was selected as a case study, with the process being computationally intensive as it requires simulation of many replicas of the ensemble in real time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agro-areas of Arroyos Menores (La Colacha) west and south of Rand south of R?o Cuarto (Prov. of Cordoba, Argentina) basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS) with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM); first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La gestión de riesgos debe ser entendida como una determinación de vínculos entre lo que se asume como vulnerabilidad, y la forma en la que se determinarían o estimarían la probabilidad en la concurrencia de un determinado hecho, partiendo de la idea de la concurrencia de un fenómeno y las acciones necesarias que deberán llevarse a cabo. El tema de vulnerabilidad y riesgo, cada día toma más importancia a nivel mundial, a medida que pasa el tiempo es más notoria la vulnerabilidad de ciertas poblaciones ante la presencia de determinados peligros naturales como son: inundaciones, desbordes de ríos, deslizamientos de tierra y movimientos sísmicos. La vulnerabilidad aumenta, a medida que crece la deforestación. La construcción en lugares de alto riesgo, como por ejemplo, viviendas a orillas de los ríos, está condicionada por la localización y las condiciones de uso del suelo, infraestructura, construcciones, viviendas, distribución y densidad de población, capacidad de organización, etc. Es ahora donde la gestión de riesgos, juega un papel muy importante en la sociedad moderna, siendo esta cada vez más exigente con los resultados y calidad de productos y servicios, además de cumplir también, con la responsabilidad jurídica que trae la concepción, diseño y construcción de proyectos en zonas inundables. El presente trabajo de investigación, se centra en identificar los riesgos, aplicando soluciones estructurales y recomendaciones resilientes para edificaciones que se encuentren emplazadas en zonas inundables. Disminuyendo así el riesgo de fallo estructural y el número de víctimas considerablemente. Concluyendo con un Catálogo de Riesgos y Soluciones para edificaciones en zonas inundables. Risk management should be understood as a determination of links between what is assumed to be vulnerable , and how that would be determined or would estimate the probability in the occurrence of a certain event, based on the idea of the occurrence of a phenomenon and necessary actions to be carried out . The issue of vulnerability and risk, every day takes more importance globally, as time passes is more notorious vulnerability of certain populations in the presence of certain natural hazards such as floods, swollen rivers, landslides and earthquakes. Vulnerability increases as it grows deforestation. The construction in high-risk locations, such as homes on the banks of rivers, is conditioned by the location and conditions of land use, infrastructure, construction, housing, distribution and population density, organizational skills, etc. Now where risk management plays a very important role in modern society, is being increasingly demanding with the results and quality of products and services, and also comply with the legal responsibility that brings the conception, design and construction projects in flood zones. This research focuses on identifying risks, implementing structural solutions and resilients’ recommendations for buildings that are emplaced in flood zones. Thus decreasing the risk of structural failure and the number of victims significantly. Concluding with a Catalogue of Risks and Solutions for buildings in flood zones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The economic evaluation of drought impacts is essential in order to define efficient and sustainable management and mitigation strategies. The aim of this study is to evaluate the economic impacts of a drought event on the agricultural sector and measure how they are transmitted from primary production to industrial output and related employment. We fit econometric models to determine the magnitude of the economic loss attributable to water storage. The direct impacts of drought on agricultural productivity are measured through a direct attribution model. Indirect impacts on agricultural employment and the agri-food industry are evaluated through a nested indirect attribution model. The transmission of water scarcity effects from agricultural production to macroeconomic variables is measured through chained elasticities. The models allow for differentiating the impacts deriving from water scarcity from other sources of economic losses. Results show that the importance of drought impacts are less relevant at the macroeconomic level, but are more significant for those activities directly dependent on water abstractions and precipitation. From a management perspective, implications of these findings are important to develop effective mitigation strategies to reduce drought risk exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flash floods are of major relevance in natural disaster management in the Mediterranean region. In many cases, the damaging effects of flash floods can be mitigated by adequate management of flood control reservoirs. This requires the development of suitable models for optimal operation of reservoirs. A probabilistic methodology for calibrating the parameters of a reservoir flood control model (RFCM) that takes into account the stochastic variability of flood events is presented. This study addresses the crucial problem of operating reservoirs during flood events, considering downstream river damages and dam failure risk as conflicting operation criteria. These two criteria are aggregated into a single objective of total expected damages from both the maximum released flows and stored volumes (overall risk index). For each selected parameter set the RFCM is run under a wide range of hydrologic loads (determined through Monte Carlo simulation). The optimal parameter set is obtained through the overall risk index (balanced solution) and then compared with other solutions of the Pareto front. The proposed methodology is implemented at three different reservoirs in the southeast of Spain. The results obtained show that the balanced solution offers a good compromise between the two main objectives of reservoir flood control management

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X mayor que x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Existe una creciente preocupación por las catástrofes de origen natural que están por llegar, motivo por el que se están realizando estudios desde prácticamente todas las ramas de la ciencia. La razón para ello se puede encontrar en el miedo a que los eventos futuros puedan dificultar las actividades humanas, aunque no es el único factor. Por todo ello, se produce una dispersión muy importante incluso en los conceptos más elementales como qué debe ser considerado o cómo debe llamarse y catalogarse uno u otro elemento. En consecuencia, los métodos para comprender los riesgos naturales también son muy diferentes, rara vez encontrándose enfoques realmente multidisciplinares. Se han realizado algunos esfuerzos para crear un marco de entendimiento común como por ejemplo, la "Directiva sobre inundaciones" o, más recientemente, la Directiva Inspire. Las entidades aseguradoras y reaseguradoras son un actor importante entre los muchos involucrados en los estudios de riesgos. Su interés radica en el hecho de que terminan pagando la mayor parte de la factura, si no toda. Pero, a cuánto puede ascender esa factura, no es una pregunta fácil de responder aún en casos muy concretos, y sin embargo, es la pregunta que constantemente se plantea por parte de los tomadores de decisiones a todos los niveles. Este documento resume las actividades de investigación que han llevado a cabo al objeto de sentar un marco de referencia, implementando de enfoques numéricos capaces de hacer frente a algunas de las cuestiones más relevantes que se encuentran en casi todos los estudios de riesgos naturales, ensayando conceptos de manera pragmática. Para ello, se escogió un lugar experimental de acuerdo a diferentes criterios, como la densidad de población, la facilidad de proporcionar los límites geográficos claros, la presencia de tres de los procesos geológicos más importantes (inundaciones, terremotos y vulcanismo) y la disponibilidad de datos. El modelo aquí propuesto aprovecha fuentes de datos muy diversas para evaluar los peligros naturales, poniendo de relieve la necesidad de un enfoque multidisciplinar y emplea un catálogo de datos único, unificado, independiente (no orientado), coherente y homogéneo para estimar el valor de las propiedades. Ahora bien, los datos se explotan de manera diferente según cada tipo de peligro, manteniendo sin variación los conceptos subyacentes. Durante esta investigación, se ha encontrado una gran brecha en la relación entre las pérdidas reales y las probabilidades del peligro, algo contrario a lo que se ha pensado que debía ser el comportamiento más probable de los riesgos naturales, demostrando que los estudios de riesgo tienen vida útil muy limitada. En parte debido ello, el modelo propuesto en este estudio es el de trabajar con escenarios, fijando una probabilidad de ocurrencia, lo que es contrario al modelo clásico de evaluar funciones continuas de riesgo. Otra razón para abordar la cuestión mediante escenarios es forzar al modelo para proporcionar unas cifras creíbles de daño máximo fijando cuestiones como la ubicación espacial de un evento y sus probabilidades, aportando una nueva visión del "peor escenario posible” de probabilidad conocida. ABSTRACT There is a growing concern about catastrophes of natural origin about to come hence many studies are being carried out from almost any science branch. Even though it is not the only one, fear for the upcoming events that might jeopardize any given human activity is the main motive. A forking effect is therefore heavily present even on the basic concepts of what is to be considered or how should it be named and catalogued; as a consequence, methods towards understanding natural risks also show great differences and a multidisciplinary approach has seldomly been followed. Some efforts were made to create a common understanding of such a matter, the “Floods Directive” or more recently the Inspire Directive, are a couple of examples. The insurance sector is an important actor among the many involved. Their interest relies on the fact that, eventually, they pay most of the bill if not all. But how much could that be is not an easy question to be answerd even in a very specific case, and it is almost always the question posed by decision makers at all levels. This document summarizes research activities that have being carried out in order to put some solid ground to be followed, implementing numerical approaches that are capable of coping with some of the most relevant issues found in almost all natural risk studies, testing concepts pragmatically. In order to do so, an experimental site was selected according to different criteria, such as population density, the ease of providing clear geographical boundaries, the presence of three of the most important geological processes (floods, earthquakes and volcanism) and data availability. The model herein proposed takes advantage of very diferent data sources in the assessment of hazard, pointing out how a multidisciplinary approach is needed, and uses only one unified, independent, consistent, homogeneous (non objective driven) source for assessing property value. Data is exploited differently according to each hazard type, but the underlying concepts remain the same. During this research, a deep detachment was found between actual loss and hazard chances, contrarily to what has been thought to be the most likely behaviour of natural hazards, proving that risk studies have a very limited lifespan. Partially because of such finding, the model in this study addresses scenarios with fixed probability of occurrence, as opposed to studying a continuous hazard function as usually proposed. Another reason for studying scenarios was to force the model to provide a reliable figure after a set of given parameters where fixed, such as the spatial location of an event and its chances, so the “worst case” of a given return period could be found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper shows the importance of a holistic comprehension of the Earth as a living planet, where man inhabits and is exposed to environmental incidences of different nature. The aim of the paper here summarized is a reflection on all these concepts and scientific considerations related to the important role of men in the handling of natural hazards. Our Planet is an unstable and dynamical system highly sensitive to initial conditions, as proposed by Chaos theory (González-Miranda 2004); it is a complex organic whole, which responds to minimal variations which can affect several natural phenomena such as plate tectonics, solar flares, fluid turbulences, landscape formation, forest fires, growth and migration of populations and biological evolution. This is known as the “butterfly effect” (Lorenz 1972), which means that a small change of the system causes a chain of events leading to large-scale unpredictable consequences. The aim of this work is dwelling on the importance of the knowledge of these natural and catastrophic geological, biological and human systems so much sensible to equilibrium conditions, to prevent, avoid and mend their effects, and to face them in a resilient way

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flash floods represent one of the most common natural hazards in mountain catchments, and are frequent in Mediterranean environments. As a result of the widespread lack of reliable data on past events, the understanding of their spatio-temporal occurrence and their climatic triggers remains rather limited. Here, we present a dendrogeomorphic reconstruction of past flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama, Spanish Central System). We analyze a total of 287 increment cores from 178 disturbed Scots pine trees (Pinus sylvestris L.) which yielded indications on 212 growth disturbances related to past flash flood impact. In combination with local archives, meteorological data, annual forest management records and highly-resolved terrestrial data (i.e., LiDAR data and aerial imagery), the dendrogeomorphic time series allowed dating 25 flash floods over the last three centuries, with a major event leaving an intense geomorphic footprint throughout the catchment in 1936. The analysis of meteorological records suggests that the rainfall thresholds of flash floods vary with the seasonality of events. Dated flash floods in the 20th century were primarily related with synoptic troughs owing to the arrival of air masses from north and west on the Iberian Peninsula during negative indices of the North Atlantic Oscillation. The results of this study contribute considerably to a better understanding of hazards related with hydrogeomorphic processes in central Spain in general and in the Sierra de Guadarrama National Park in particular.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenic zonation) and its magnitude dependence (without using Gutenberg–Richter's relationship). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation relationships have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra