146 resultados para inductive logic programming
Resumo:
We present and evaluate a compiler from Prolog (and extensions) to JavaScript which makes it possible to use (constraint) logic programming to develop the client side of web applications while being compliant with current industry standards. Targeting JavaScript makes (C)LP programs executable in virtually every modern computing device with no additional software requirements from the point of view of the user. In turn, the use of a very high-level language facilitates the development of high-quality, complex software. The compiler is a back end of the Ciao system and supports most of its features, including its module system and its rich language extension mechanism based on packages. We present an overview of the compilation process and a detailed description of the run-time system, including the support for modular compilation into separate JavaScript code. We demonstrate the maturity of the compiler by testing it with complex code such as a CLP(FD) library written in Prolog with attributed variables. Finally, we validate our proposal by measuring the performance of some LP and CLP(FD) benchmarks running on top of major JavaScript engines.
Resumo:
Lpdoc is an automatic program documentation generator for (C)LP systems. Lpdoc generates a reference manual automatically from one or more source files for a logic program (including ISO-Prolog, Ciao, many CLP systems, ...). It is particularly useful for documenting library modules, for which it automatically generates a description of the module interface. However, lpdoc can also be used quite successfully to document full applications and to generate nicely formatted plain ascii "readme" files. A fundamental advantage of using lpdoc to document programs is that it is much easier to maintain a true correspondence between the program and its documentation, and to identify precisely to what version of the program a given printed manual corresponds. The quality of the documentation generated can be greatly enhanced by including within the program text: • assertions (types, modes, etc. ...) for the predicates in the program, and • machine-readable comments (in the "literate programming" style). The assertions and comments included in the source file need to be written using the Ciao system assertion language. A simple compatibility library is available to make traditional (constraint) logic programming systems ignore these assertions and comments allowing normal treatment of programs documented in this way. The documentation is currently generated in HTML or texinf o format. From the texinf o output, printed and on-line manuals in several formats (dvi, ps, info, etc.) can be easily generated automatically, using publicly available tools, lpdoc can also generate 'man' pages (Unix man page format) as well as brief descriptions in html or emacs info formats suitable for inclusion in an on-line index of applications. In particular, lpdoc can create and maintain fully automatically WWW and info sites containing on-line versions of the documents it produces. The lpdoc manual (and the Ciao system manuals) are generated by lpdoc. Lpdoc is distributed under the GNU general public license. Note: lpdoc is fully supported on Linux, Mac OS X, and other Un*x-like systems. Due to the use of several Un*x-related utilities, some documentation back-ends may require Cygwin under Win32. This documentation corresponds to version 3.0 (2011/7/7, 16:33:15 CEST).
Resumo:
Abstract is not available
Resumo:
Visualisation of program executions has been used in applications which include education and debugging. However, traditional visualisation techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behaviour of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualising data evolution in CLP. We briefly review some previously proposed visualisation paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyse the behaviour and characteristics of an execution. In particular, we concentrate on the representation of the run-time values of the variables, and the constraints among them. Given our interest in visualising large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
The concept of independence has been recently generalized to the constraint logic programming (CLP) paradigm. Also, several abstract domains specifically designed for CLP languages, and whose information can be used to detect the generalized independence conditions, have been recently defined. As a result we are now in a position where automatic parallelization of CLP programs is feasible. In this paper we study the task of automatically parallelizing CLP programs based on such analyses, by transforming them to explicitly concurrent programs in our parallel CC platform (CIAO) as well as to AKL. We describe the analysis and transformation process, and study its efficiency, accuracy, and effectiveness in program parallelization. The information gathered by the analyzers is evaluated not only in terms of its accuracy, i.e. its ability to determine the actual dependencies among the program variables, but also of its effectiveness, measured in terms of code reduction in the resulting parallelized programs. Given that only a few abstract domains have been already defined for CLP, and that none of them were specifically designed for dependency detection, the aim of the evaluation is not only to asses the effectiveness of the available domains, but also to study what additional information it would be desirable to infer, and what domains would be appropriate for further improving the parallelization process.
Resumo:
Logic programming systems which exploit and-parallelism among non-deterministic goals rely on notions of independence among those goals in order to ensure certain efficiency properties. "Non-strict" independence (NSI) is a more relaxed notion than the traditional notion of "strict" independence (SI) which still ensures the relevant efficiency properties and can allow considerable more parallelism than SI. However, all compilation technology developed to date has been based on SI, presumably because of the intrinsic complexity of exploiting NSI. This is related to the fact that NSI cannot be determined "a priori" as SI. This paper fills this gap by developing a technique for compile-time detection and annotation of NSI. It also proposes algorithms for combined compile- time/run-time detection, presenting novel run-time checks for this type of parallelism. Also, a transformation procedure to eliminate shared variables among parallel goals is presented, attempting to perform as much work as possible at compiletime. The approach is based on the knowledge of certain properties about run-time instantiations of program variables —sharing and freeness— for which compile-time technology is available, with new approaches being currently proposed.
Resumo:
This report presents an overview of the current work performed by us in the context of the efficient parallel implementation of traditional logic programming systems. The work is based on the &-Prolog System, a system for the automatic parallelization and execution of logic programming languages within the Independent And-parallelism model, and the global analysis and parallelization tools which have been developed for this system. In order to make the report self-contained, we first describe the "classical" tools of the &-Prolog system. We then explain in detail the work performed in improving and generalizing the global analysis and parallelization tools. Also, we describe the objectives which will drive our future work in this area.
Resumo:
This paper presents an approximation to the study of parallel systems using sequential tools. The Independent And-parallelism in Prolog is an example of parallel processing paradigm in the framework of logic programming, and implementations like
Resumo:
This paper presents an approximation to the study of parallel systems using sequential tools. The Independent And-parallelism in Prolog is an example of parallel processing paradigm in the framework of logic programming, and implementations like
Resumo:
We present a new free library for Constraint Logic Programming over Finite Domains, included with the Ciao Prolog system. The library is entirely written in Prolog, leveraging on Ciao's module system and code transformation capabilities in order to achieve a highly modular design without compromising performance. We describe the interface, implementation, and design rationale of each modular component. The library meets several design goals: a high level of modularity, allowing the individual components to be replaced by different versions; highefficiency, being competitive with other TT> implementations; a glass-box approach, so the user can specify new constraints at different levels; and a Prolog implementation, in order to ease the integration with Ciao's code analysis components. The core is built upon two small libraries which implement integer ranges and closures. On top of that, a finite domain variable datatype is defined, taking care of constraint reexecution depending on range changes. These three libraries form what we call the TT> kernel of the library. This TT> kernel is used in turn to implement several higher-level finite domain constraints, specified using indexicals. Together with a labeling module this layer forms what we name the TT> solver. A final level integrates the CLP (J7©) paradigm with our TT> solver. This is achieved using attributed variables and a compiler from the CLP (J7©) language to the set of constraints provided by the solver. It should be noted that the user of the library is encouraged to work in any of those levels as seen convenient: from writing a new range module to enriching the set of TT> constraints by writing new indexicals.
Resumo:
This paper describes a framework to combine tabling evalua- tion and constraint logic programming (TCLP). While this combination has been studied previously from a theoretical point of view and some implementations exist, they either suffer from a lack of efficiency, flex- ibility, or generality, or have inherent limitations with respect to the programs they can execute to completion (either with success or fail- ure). Our framework addresses these issues directly, including the ability to check for answer / call entailment, which allows it to terminate in more cases than other approaches. The proposed framework is experimentally compared with existing solutions in order to provide evidence of the mentioned advantages.
Resumo:
Esta tesis tiene por objeto estudiar las posibilidades de realizar en castellano tareas relativas a la resolución de problemas con sistemas basados en el conocimiento. En los dos primeros capítulos se plantea un análisis de la trayectoria seguida por las técnicas de tratamiento del lenguaje natural, prestando especial interés a los formalismos lógicos para la comprensión del lenguaje. Seguidamente, se plantea una valoración de la situación actual de los sistemas de tratamiento del lenguaje natural. Finalmente, se presenta lo que constituye el núcleo de este trabajo, un sistema llamado Sirena, que permite realizar tareas de adquisición, comprensión, recuperación y explicación de conocimiento en castellano con sistemas basados en el conocimiento. Este sistema contiene un subconjunto del castellano amplio pero simple formalizado con una gramática lógica. El significado del conocimiento se basa en la lógica y ha sido implementado en el lenguaje de programación lógica Prolog II vS. Palabras clave: Programación Lógica, Comprensión del Lenguaje Natural, Resolución de Problemas, Gramáticas Lógicas, Lingüistica Computacional, Inteligencia Artificial.---ABSTRACT---The purpose of this thesis is to study the possibi1 ities of performing in Spanish problem solving tasks with knowledge based systems. Ule study the development of the techniques for natural language processing with a particular interest in the logical formalisms that have been used to understand natural languages. Then, we present an evaluation of the current state of art in the field of natural language processing systems. Finally, we introduce the main contribution of our work, Sirena a system that allows the adquisition, understanding, retrieval and explanation of knowledge in Spanish with knowledge based systems. Sirena can deal with a large, although simple» subset of Spanish. This subset has been formalised by means of a logic grammar and the meaning of knowledge is based on logic. Sirena has been implemented in the programming language Prolog II v2. Keywords: Logic Programming, Understanding Natural Language, Problem Solving, Logic Grammars, Cumputational Linguistic, Artificial Intelligence.
Resumo:
Logic programming (LP) is a family of high-level programming languages which provides high expressive power. With LP, the programmer writes the properties of the result and / or executable specifications instead of detailed computation steps. Logic programming systems which feature tabled execution and constraint logic programming have been shown to increase the declarativeness and efficiency of Prolog, while at the same time making it possible to write very expressive programs. Tabled execution avoids infinite failure in some cases, while improving efficiency in programs which repeat computations. CLP reduces the search tree and brings the power of solving (in)equations over arbitrary domains. Similarly to the LP case, CLP systems can also benefit from the power of tabling. Previous implementations which take ful advantage of the ideas behind tabling (e.g., forcing suspension, answer subsumption, etc. wherever it is necessary to avoid recomputation and terminate whenever possible) did not offer a simple, well-documented, easy-to-understand interface. This would be necessary to make the integratation of arbitrary CLP solvers into existing tabling systems possible. This clearly hinders a more widespread usage of the combination of both facilities. In this thesis we examine the requirements that a constraint solver must fulfill in order to be interfaced with a tabling system. We propose and implement a framework, which we have called Mod TCLP, with a minimal set of operations (e.g., entailment checking and projection) which the constraint solver has to provide to the tabling engine. We validate the design of Mod TCLP by a series of use cases: we re-engineer a previously existing tabled constrain domain (difference constraints) which was connected in an ad-hoc manner with the tabling engine in Ciao Prolog; we integrateHolzbauer’s CLP(Q) implementationwith Ciao Prolog’s tabling engine; and we implement a constraint solver over (finite) lattices. We evaluate its performance with several benchmarks that implement a simple abstract interpreter whose fixpoint is reached by means of tabled execution, and whose domain operations are handled by the constraint over (finite) lattices, where TCLP avoids recomputing subsumed abstractions.---ABSTRACT---La programación lógica con restricciones (CLP) y la tabulación son extensiones de la programación lógica que incrementan la declaratividad y eficiencia de Prolog, al mismo tiempo que hacen posible escribir programasmás expresivos. Las implementaciones anteriores que integran completamente ambas extensiones, incluyendo la suspensión de la ejecución de objetivos siempre que sea necesario, la implementación de inclusión (subsumption) de respuestas, etc., en todos los puntos en los que sea necesario para evitar recomputaciones y garantizar la terminación cuando sea posible, no han proporcionan una interfaz simple, bien documentada y fácil de entender. Esta interfaz es necesaria para permitir integrar resolutores de CLP arbitrarios en el sistema de tabulación. Esto claramente dificulta un uso más generalizado de la integración de ambas extensiones. En esta tesis examinamos los requisitos que un resolutor de restricciones debe cumplir para ser integrado con un sistema de tabulación. Proponemos un esquema (y su implementación), que hemos llamadoMod TCLP, que requiere un reducido conjunto de operaciones (en particular, y entre otras, entailment y proyección de almacenes de restricciones) que el resolutor de restricciones debe ofrecer al sistema de tabulación. Hemos validado el diseño de Mod TCLP con una serie de casos de uso: la refactorización de un sistema de restricciones (difference constraints) previamente conectado de un modo ad-hoc con la tabulación de Ciao Prolog; la integración del sistema de restricciones CLP(Q) de Holzbauer; y la implementación de un resolutor de restricciones sobre retículos finitos. Hemos evaluado su rendimiento con varios programas de prueba, incluyendo la implementación de un intérprete abstracto que alcanza su punto fijo mediante el sistema de tabulación y en el que las operaciones en el dominio son realizadas por el resolutor de restricciones sobre retículos (finitos) donde TCLP evita la recomputación de valores abstractos de las variables ya contenidos en llamadas anteriores.
Resumo:
Nowadays, devices that monitor the health of structures consume a lot of power and need a lot of time to acquire, process, and send the information about the structure to the main processing unit. To decrease this time, fast electronic devices are starting to be used to accelerate this processing. In this paper some hardware algorithms implemented in an electronic logic programming device are described. The goal of this implementation is accelerate the process and diminish the information that has to be send. By reaching this goal, the time the processor needs for treating all the information is reduced and so the power consumption is reduced too.
Resumo:
El objetivo principal de este proyecto ha sido introducir aprendizaje automático en la aplicación FleSe. FleSe es una aplicación web que permite realizar consultas borrosas sobre bases de datos nítidos. Para llevar a cabo esta función la aplicación utiliza unos criterios para definir los conceptos borrosos usados para llevar a cabo las consultas. FleSe además permite que el usuario cambie estas personalizaciones. Es aquí donde introduciremos el aprendizaje automático, de tal manera que los criterios por defecto cambien y aprendan en función de las personalizaciones que van realizando los usuarios. Los objetivos secundarios han sido familiarizarse con el desarrollo y diseño web, al igual que recordar y ampliar el conocimiento sobre lógica borrosa y el lenguaje de programación lógica Ciao-Prolog. A lo largo de la realización del proyecto y sobre todo después del estudio de los resultados se demuestra que la agrupación de los usuarios marca la diferencia con la última versión de la aplicación. Esto se basa en la siguiente idea, podemos usar un algoritmo de aprendizaje automático sobre las personalizaciones de los criterios de todos los usuarios, pero la gran diversidad de opiniones de los usuarios puede llevar al algoritmo a concluir criterios erróneos o no representativos. Para solucionar este problema agrupamos a los usuarios intentando que cada grupo tengan la misma opinión o mismo criterio sobre el concepto. Y después de haber realizado las agrupaciones usar el algoritmo de aprendizaje automático para precisar el criterio por defecto de cada grupo de usuarios. Como posibles mejoras para futuras versiones de la aplicación FleSe sería un mejor control y manejo del ejecutable plserver. Este archivo se encarga de permitir a la aplicación web usar el lenguaje de programación lógica Ciao-Prolog para llevar a cabo la lógica borrosa relacionada con las consultas. Uno de los problemas más importantes que ofrece plserver es que bloquea el hilo de ejecución al intentar cargar un archivo con errores y en caso de ocurrir repetidas veces bloquea todas las peticiones siguientes bloqueando la aplicación. Pensando en los usuarios y posibles clientes, sería también importante permitir que FleSe trabajase con bases de datos de SQL en vez de almacenar la base de datos en los archivos de Prolog. Otra posible mejora basarse en distintas características a la hora de agrupar los usuarios dependiendo de los conceptos borrosos que se van ha utilizar en las consultas. Con esto se conseguiría que para cada concepto borroso, se generasen distintos grupos de usuarios, los cuales tendrían opiniones distintas sobre el concepto en cuestión. Así se generarían criterios por defecto más precisos para cada usuario y cada concepto borroso.---ABSTRACT---The main objective of this project has been to introduce machine learning in the application FleSe. FleSe is a web application that makes fuzzy queries over databases with precise information, using defined criteria to define the fuzzy concepts used by the queries. The application allows the users to change and custom these criteria. On this point is where the machine learning would be introduced, so FleSe learn from every new user customization of the criteria in order to generate a new default value of it. The secondary objectives of this project were get familiar with web development and web design in order to understand the how the application works, as well as refresh and improve the knowledge about fuzzy logic and logic programing. During the realization of the project and after the study of the results, I realized that clustering the users in different groups makes the difference between this new version of the application and the previous. This conclusion follows the next idea, we can use an algorithm to introduce machine learning over the criteria that people have, but the problem is the diversity of opinions and judgements that exists, making impossible to generate a unique correct criteria for all the users. In order to solve this problem, before using the machine learning methods, we cluster the users in order to make groups that have the same opinion, and afterwards, use the machine learning methods to precise the default criteria of each users group. The future improvements that could be important for the next versions of FleSe will be to control better the behaviour of the plserver file, that cost many troubles at the beginning of this project and it also generate important errors in the previous version. The file plserver allows the web application to use Ciao-Prolog, a logic programming language that control and manage all the fuzzy logic. One of the main problems with plserver is that when the user uploads a file with errors, it will block the thread and when this happens multiple times it will start blocking all the requests. Oriented to the customer, would be important as well to allow FleSe to manage and work with SQL databases instead of store the data in the Prolog files. Another possible improvement would that the cluster algorithm would be based on different criteria depending on the fuzzy concepts that the selected Prolog file have. This will generate more meaningful clusters, and therefore, the default criteria offered to the users will be more precise.