133 resultados para dye-sensitised solar cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multijunction solar cells (MJSC) use anti-reflective coatings (ARC) to minimize Fresnel reflection losses for a family of light incidence angles. These coatings adapt the refractive index of the cell to that of the surrounding medium. Patterns with sizes in the range of the light wavelength can be used to further reduce reflections through diffraction. Transparent nanopatterns with a gradual profile, called moth-eye nanostructures, can adapt the refractive index of the optical interfaces (often with n∼1.5) used to encapsulate concentrator solar cells to that of the air (n air∼1). Here we show the effect of a nanometric moth-eye ARC with a round motif deposited on commercial MJSC that achieves short-circuit current (I SC) gains greater than 2% at normal incidence and even higher in the case of tilted illumination. In this work, MJSC with different moth-eye ARC are characterized under quantum efficiency (QE) as well as under concentrated illumination I-V in order to assess their potential. Simulations based on coupled wave analysis (RCWA) are used to fit the experimental results with successful results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simple mathematical model to estimateshadinglosses on PVarrays. The model is applied directly to power calculations, without the need to consider the whole current–voltage curve. This allows the model to be used with common yield estimation software. The model takes into account both the shaded fraction of the array area and the number of blocks (a group of solar cells protected by a bypass diode) affected by shade. The results of an experimental testing campaign on several shaded PVarrays to check the validity of model are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High efficiency solar cells working under ultra-high concentrations (>;1000X) have been shown to be a promising solution to decrease the cost of PV electricity, increase the efficiency and circumvent the material availability restrictions for massive PV penetration. A detailed analysis of the limitations of our current triple junction solar cell (36.2% at 700X), in the quest to maximize efficiency at 1000X, shows that the main improvements to tackle are: a) implementation of a high band gap tunnel junction; b) increase the band gap of the top cell; c) fine current matching tune; d) enhancement of the front contact process. This constitutes our roadmap to reach an efficiency over 41%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models based on degradation are powerful and useful tools to evaluate the reliability of those devices in which failure happens because of degradation in the performance parameters. This paper presents a procedure for assessing the reliability of concentrator photovoltaic (CPV) modules operating outdoors in real-time conditions. With this model, the main reliability functions are predicted. This model has been applied to a real case with a module composed of GaAs single-junction solar cells and total internal reflection (TIR) optics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal grid lines are a vital element in multijunction solar cells in order to take out from the cell the generated photocurrent. Nevertheless all this implies certain shadowing factor and thus certain reflectivity on cells surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. It has been possible thanks to the recent invention of the advanced Köhler concentrators by LPI, likely to integrate one of these cavities easily. We have proven the excellent performance of these cavities integrated in this kind of CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell=25ºC and relative efficiency and Isc gains of over 6%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its small band-gap and its high mobility, InN is a promising material for a large number of key applications like band-gap engineering for high efficiency solar cells, light emitting diodes, and high speed devices. Unfortunately, it has been reported that this material exhibits strong surface charge accumulation which may depend on the type of surface. Current investigations are conducted in order to explain the mechanisms which govern such a behavior and to look for ways of avoiding it and/or finding applications that may use such an effect. In this framework, low frequency noise measurements have been performed at different temperatures on patterned MBE grown InN layers. The evolution of the 1/f noise level with temperature in the 77 K-300 K range is consistent with carrier number fluctuations thus indicating surface mechanisms: the surface charge accumulation is confirmed by the noise measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional time

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GaN/InGaN nanorods have attracted much scientific interest during the last decade because of their unique optical and electrical properties [1,2]. The high crystal quality and the absence of extended defects make them ideal candidates for the fabrication of high efficiency opto-electronic devices such as nano-photodetectors, light-emitting diodes, and solar cells [1-3]. Nitrides nanorods are commonly grown in the self-assembled mode by plasma-assisted molecular beam epitaxy (MBE) [4]. However, self-assembled nanorods are characterized by inhomogeneous heights and diameters, which render the device processing very difficult and negatively affect the electronic transport properties of the final device. For this reason, the selective area growth (SAG) mode has been proposed, where the nanorods preferentially grow on pre-defined sites on a pre-patterned substrate [5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multijunction solar cells present a certain reflectivity on its surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. We have proven the excellent performance of these cavities integrated in CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell  =  25 °C and relative efficiency and Isc gains of over 6%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-monocrystalline silicon wafers have appeared as a critical innovation in the PV industry, joining the most favourable characteristics of the conventional substrates: the higher solar cell efficiencies of monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost and the full square-shape of the multicrystalline ones. However, the quasi-mono ingot growth can lead to a different defect structure than the typical Cz-Si process. Thus, the properties of the brand-new quasi-mono wafers, from a mechanical point of view, have been for the first time studied, comparing their strength with that of both Cz-Si mono and typical multicrystalline materials. The study has been carried out employing the four line bending test and simulating them by means of FE models. For the analysis, failure stresses were fitted to a three-parameter Weibull distribution. High mechanical strength was found in all the cases. The low quality quasi-mono wafers, interestingly, did not exhibit critical strength values for the PV industry, despite their noticeable density of extended defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crop diseases sometimes are related to the irradiance that the crop receives. When an experiment requires the measurement of the irradiance, usually it results in an expensive data acquisition system. If it is necessary to check many test points, the use of traditional sensors will increase the cost of the experiment. By using low cost sensors based in the photovoltaic effect, it is possible to perform a precise test of irradiance with a reduced price. This work presents an experiment performed in Ademuz (Valencia, Spain) during September of 2011 to check the validity of low cost sensors based on solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper details an investigation into the appearance of hot-spots in two large grid-connected photovoltaics (PV) plants, which were detected after the visual inspection of trackers whose energy output was decreasing at anomalous rate. Detected hot-spots appeared not only in the solar cells but also in resistive solder bonds (RSB) between cells and contact ribbons. Both types cause similar irreversible damage to the PV modules, but the latter are the main responsible for the detected decrease in energy output, which was confirmed in an experimental testing campaign. The results of this investigation, for example, how hot-spots were detected or their impact on the output power of PV modules, may be of interest for the routine maintenance of large grid-connected PV plants.