268 resultados para ENERGÍA NUCLEAR - ASPECTOS POLÍTICOS
Resumo:
The HiPER project, phase 4a, is evolving. In this study we present the progress made in the field of neutronics and radiological protection for an integrated design of the facility. In the current model, we take into account the optical systems inside the target bay, as well as the remote handling requirements and related infrastructure, together with different shields. The last reference irradiation scenario, consisting of 20 MJ of neutron yields, 5 yields per burst, one burst every week and 30 years of expected lifetime is considered for this study. We have performed a characterization of the dose rates behavior in the facility, both during operation and between bursts. The dose rates are computed for workers, regarding to maintenance and handling, and also for optical systems, regarding to damage. Furthermore, we have performed a waste management assessment of all the components inside the target bay. Results indicate that remote maintenance is mandatory in some areas. The small beam penetrations in the shields are responsible for some high doses in some specific locations. With regards to optics, the residual doses are as high as prompt doses. It is found that the whole target bay may be fully managed as a waste in 30 years by recycling and/or clearance, with no need for burial.
Resumo:
X-ray free-electron lasers1,2 delivering up to 131013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3?5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (131015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell?Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 531014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW.
Resumo:
The kinetics of amorphization in crystalline SiO2 (α-quartz) under irradiation with swift heavy ions (O+1 at 4 MeV, O+4 at 13 MeV, F+2 at 5 MeV, F+4 at 15 MeV, Cl+3 at 10 MeV, Cl+4 at 20 MeV, Br+5 at 15 and 25 MeV and Br+8 at 40 MeV) has been analyzed in this work with an Avrami-type law and also with a recently developed cumulative approach (track-overlap model). This latter model assumes a track morphology consisting of an amorphous core (area σ) and a surrounding defective halo (area h), both being axially symmetric. The parameters of the two approaches which provide the best fit to the experimental data have been obtained as a function of the electronic stopping power Se. The extrapolation of the σ(Se) dependence yields a threshold value for amorphization, Sth ≈ 2.1 keV/nm; a second threshold is also observed around 4.1 keV/nm. We believe that this double-threshold effect could be related to the appearance of discontinuous tracks in the region between 2.1 and 4.1 keV/nm. For stopping power values around or below the lower threshold, where the ratio h/σ is large, the track-overlap model provides a much better fit than the Avrami function. Therefore, the data show that a right modeling of the amorphization kinetics needs to take into account the contribution of the defective track halo. Finally, a short comparative discussion with the kinetic laws obtained for elastic collision damage is given.
Resumo:
We have determined the cross-section σ for color center generation under single Br ion impacts on amorphous SiO2. The evolution of the cross-sections, σ(E) and σ(Se), show an initial flat stage that we associate to atomic collision mechanisms. Above a certain threshold value (Se > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), σ shows a marked increase due to electronic processes. In this regime, a energetic cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E′ (NBOHC/E′) pair, whatever the input energy. The data appear consistent with a non-radiative decay of self-trapped excitons.
Resumo:
Systematic data on the effect of irradiation with swift ions (Zn at 735 MeV and Xe at 929 MeV) on NaCl single crystals have been analysed in terms of a synergetic two-spike approach (thermal and excitation spikes). The coupling of the two spikes, simultaneously generated by the irradiation, contributes to the operation of a non-radiative exciton decay model as proposed for purely ionization damage. Using this scheme, we have accounted for the π-emission yield of self-trapped excitons and its temperature dependence under ion-beam irradiation. Moreover, the initial production rates of F-centre growth have also been reasonably simulated for irradiation at low temperatures ( < 100 K), where colour centre annealing and aggregation can be neglected.
Resumo:
The refractive index changes induced by swift ion-beam irradiation in silica have been measured either by spectroscopic ellipsometry or through the effective indices of the optical modes propagating through the irradiated structure. The optical response has been analyzed by considering an effective homogeneous medium to simulate the nanostructured irradiated system consisting of cylindrical tracks, associated to the ion impacts, embedded into a virgin material. The role of both, irradiation fluence and stopping power, has been investigated. Above a certain electronic stopping power threshold (∼2.5 keV/nm), every ion impact creates an axial region around the trajectory with a fixed refractive index (around n = 1.475) corresponding to a certain structural phase that is independent of stopping power. The results have been compared with previous data measured by means of infrared spectroscopy and small-angle X-ray scattering; possible mechanisms and theoretical models are discussed.
Resumo:
Ionoluminescence (IL) has been used in this work as a sensitive tool to probe the microscopic electronic processes and structural changes produced on quartz by the irradiation with swift heavy ions. The IL yields have been measured as a function of irradiation fluence and electronic stopping power. The results are consistent with the assignment of the 2.7 eV (460 nm) band to the recombination of self-trapped excitons at the damaged regions in the irradiated material. Moreover, it was possible to determine the threshold for amorphization by a single ion impact, as 1:7 keV/nm, which agrees well with the results of previous studies.
Resumo:
The damage induced on quartz (c-SiO2) by heavy ions (F, O, Br) at MeV energies, where electronic stopping is dominant, has been investigated by RBS/C and optical methods. The two techniques indicate the formation of amorphous layers with an isotropic refractive index (n = 1.475) at fluences around 1014 cm−2 that are associated to electronic mechanisms. The kinetics of the process can be described as the superposition of linear (possibly initial Poisson curve) and sigmoidal (Avrami-type) contributions. The coexistence of the two kinetic regimes may be associated to the differential roles of the amorphous track cores and preamorphous halos. By using ions and energies whose maximum stopping power lies inside the crystal (O at 13 MeV, F at 15 MeV and F at 30 MeV) buried amorphous layer are formed and optical waveguides at the sample surface have been generated.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
The intensities of the X and A valence photoelectron lines of N2 have been found to display Fano line shapes as a function of photon energy around the N 1s→ Rydberg excitations. The vibrational intensity distributions of these photoelectron lines change at the N 1s→3sσ and 3pπ resonances. These effects indicate interference between direct and resonant photoionization channels. Our numerical simulations reproduce quite well the experimental results.
Resumo:
Las cuestiones relacionadas con el transporte de residuos radiactivos de alta actividad (RAA) al previsto almacén temporal centralizado (ATC) en Villar de Cañas (Cuenca) están de actualidad, debido a la movilidad que se espera en un futuro próximo, el compromiso con el medio ambiente, la protección de las personas, así, como la normativa legal reguladora. En esta tesis se ha evaluado el impacto radiológico asociado a este tipo de transportes mediante una nueva herramienta de procesamiento de datos, que puede ser de utilidad y servir como documentación complementaria a la recogida en el marco legal del transporte. Además puede facilitar el análisis desde una perspectiva más científica, para investigadores, responsables públicos y técnicos en general, que pueden utilizar dicha herramienta para simular distintos escenarios de transportes radiactivos basados únicamente en datos de los materiales de entrada y las rutas elegidas. Así, conociendo el nivel de radiación a un metro del transporte y eligiendo una ruta, obtendremos los impactos asociados, tales como las poblaciones afectadas, la dosis recibida por la persona más expuesta, el impacto radiológico global, las dosis a la población en el trayecto y el posible detrimento de su salud. En España se prevé una larga “ruta radiactiva” de más de 2.000 kilómetros, por la que el combustible nuclear gastado se transportará presumiblemente por carretera desde las centrales nucleares hasta el ATC, así como los residuos vitrificados procedentes del reprocesado del combustible de la central nuclear Vandellos I, que en la actualidad están en Francia. Como conclusión más importante, se observa que la emisión de radiaciones ionizantes procedentes del transporte de residuos radiactivos de alta actividad en España, en operación normal, no es significativa a la hora de generar efectos adversos en la salud humana y su impacto radiológico puede considerarse despreciable. En caso de accidente, aunque la posibilidad del suceso es remota, las emisiones, no serán determinantes a la hora de generar efectos adversos en la salud humana. Issues related to the transport of high level radioactive wastes (HLW) to the new centralised temporary storage facility to be built in Villar de Cañas (Cuenca) are attracting renewed attention due to the mobility expected in the near future for these materials, the commitment to the environment, the protection of persons and the legal regulatory standards. This study assesses the radiological impacts associated with this type of transport by means of a new dataprocessing tool, which may be of use and serve as documentation complementary to that included in the legal framework covering transport. Furthermore, it may facilitate analysis from a more scientific perspective for researchers, public servants and technicians in general, who may use the tool to simulate different radioactive transport scenarios based only on input materials data and the routes selected. Thus, by knowing the radiation level at a distance of one metre from the transport and selecting a route, it is possible to obtain the associated impacts, such as the affected populations, the dose received by the most exposed individual, the overall radiological impact and the doses to the public en route and the possible detriment to their health. In Spain a long “radioactive route” of more than 2,000 kilometres is expected, along which spent nuclear fuels will be transported – foreseeably by road – from the nuclear power plants to the CTS facility. The route will also be used for the vitrified wastes from fuel reprocessing of the fuel from Vandellós I nuclear power plant, which are currently in France. In conclusion, it may be observed that the emission of ionising radiations from transport of high level radioactive wastes in Spain is insignificant, in normal operations, as regards the generation of adverse effects for human health, and that the radiological impact may be considered negligible. In the event of an accident, the possibility of which is remote, the emissions will not be also a very determining factor as regards adverse effects for human health.
Resumo:
The elemental distribution for as-received (AR), H implanted (AI) and post-implanted annealed (A) Eurofer and ODS-Eurofer steels has been characterized by means of micro Particle Induced X-ray Emission (μ-PIXE), micro Elastic Recoil Detection (μ-ERD) and Secondary Ion Mass Spectrometry (SIMS). The temperature and time-induced H diffusion has been analyzed by Resonance Nuclear Reaction Analysis (RNRA), Thermal Desorption Spectroscopy (TDS), ERDA and SIMS techniques. μ-PIXE measurements point out the presence of inhomogeneities in the Y distribution for ODS-Eurofer samples. RNRA and SIMS experiments evidence that hydrogen easily outdiffuses in these steels even at room temperature. ERD data show that annealing at temperatures as low as 300 °C strongly accelerates the hydrogen diffusion process, driving out up to the 90% of the initial hydrogen.
Resumo:
The elemental distribution of as-received (non-charged) and charged Li-ion battery positive electrodes containing LixNi0.8Co0.15Al0.05O2 (0.75 ? x ? 1.0) microparticles as active material is characterized by combining μ-PIXE and μ-PIGE techniques. PIGE measurements evidence that the Li distribution is inhomogeneous (existence of Li-rich and Li-depleted regions) in as-received electrodes corresponding with the distribution of secondary particles but it is homogeneous within the studied individual secondary micro-particles. The dependence of the Li distribution on electrode thickness and on charging conditions is characterized by measuring the Li distribution maps in specifically fabricated cross-sectional samples. These data show that decreasing the electrode thickness down to 35 μm and charging the batteries at slow rate give rise to more homogeneous Li depth profiles.
Resumo:
Ionoluminescence (IL) of the two SiO2 phases, amorphous silica and crystalline quartz, has been comparatively investigated in this work, in order to learn about the structural defects generated by means of ion irradiation and the role of crystalline order on the damage processes. Irradiations have been performed with Cl at 10 MeV and Br at 15 MeV, corresponding to the electronic stopping regime (i.e., where the electronic stopping power Se is dominant) and well above the amorphization threshold. The light-emission kinetics for the two main emission bands, located at 1.9 eV (652 nm) and 2.7 eV (459 nm), has been measured under the same ion irradiation conditions as a function of fluence for both, silica and quartz. The role of electronic stopping power has been also investigated and discussed within current views for electronic damage. Our experiments provide a rich phenomenological background that should help to elucidate the mechanisms responsible for light emission and defect creation.
Resumo:
Se describen de forma panorámica los pasos e hitos principales que comprende el plan de estabilización y recuperación de la central de Fukushima-Daiichi, con los logros alcanzados hasta conseguir una refrigeración estable y llegar a la parada fría de los reactores, mantener la refrigeración de las piscinas, detener prácticamente por completo de las descargas radiactivas, gestionar y reutilizar cantidades enormes de agua contaminada, limpiar el emplazamiento y aislar la unidad 1. También se presentan sucintamente las etapas previstas posteriormente hasta llegar al desmantelamiento de la central, pasando por la extracción del combustible de las piscinas, y en una fase posterior mucho más delicada, del material fundido de los núcleos de los reactores y el resto de materiales y residuos altamente radiactivos.