99 resultados para aerodynamic baffle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A panel method free-wake model to analyse the rotor flapping is presented. The aerodynamic model consists of a panel method, which takes into account the three-dimensional rotor geometry, and a free-wake model, to determine the wake shape. The main features of the model are the wake division into a near-wake sheet and a far wake represented by a single tip vortex, and the modification of the panel method formulation to take into account this particular wake description. The blades are considered rigid with a flap degree of freedom. The problem solution is approached using a relaxation method, which enforces periodic boundary conditions. Finally, several code validations against helicopter and wind turbine experimental data are performed, showing good agreement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which are described by using the quasi-steady hypothesis. The hysteresis of transverse galloping is also analyzed. Approximate solutions of the model are obtained by assuming that the aerodynamic and damping forces are much smaller than the inertial and stiffness ones. The analysis of the approximate solution, which is obtained by means of the method of Krylov–Bogoliubov, reveals the existing link between the hysteresis phenomenon and the number of inflection points at the aerodynamic force coefficient curve, Cy(α)Cy(α); CyCy and αα being, respectively, the force coefficient normal to the incident flow and the angle of attack. The influence of the position of these inflection points on the range of flow velocities in which hysteresis takes place is also analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lift and velocity circulation around airfoils are two aspects of the same phenomenon when airfoils are not stalled and the Kutta—Joukowski theorem applies. This theorem establishes a linear dependence between lift and circulation, which breaks when stalling occurs. As the angle of attack increases beyond this point, the circulation vanishes. Since the circulation determines to a great extent the position of the forward stagnation point on an airfoil, the measurement of this position is an easy and simple way to determine the circulation, which is of help in understanding the role of the latter in the generation of aerodynamic forces on airfoils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pararotor is a decelerator device based on the autorotation of a rotating wing. When it is dropped, it generates an aerodynamic force parallel to the main motion direction, acting as a decelerating force. In this paper, the rotational motion equations are shown for the vertical flight without any lateral wind component and some simplifying assumptions are introduced to obtain analytic solutions of the motion. First, the equilibrium state is obtained as a function of the main parameters. Then the equilibrium stability is analyzed. The motion stability depends on two nondimensional parameters, which contain geometric, inertia, and aerodynamic characteristics of the device. Based on these two parameters a stability diagram can be defined. Some stability regions with different types of stability trajectories (nodes, spirals, focuses) can be identified for spinning motion around axes close to the major, minor, and intermediate principal axes. It is found that the blades contribute to stability in a case of spin around the intermediate principal inertia axis, which is otherwise unstable. Subsequently, the equations for determining the angles of nutation and spin of the body are obtained, thus defining the orientation of the body for a stationary motion and the parameters on which that position depends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model of the process employed by a sonic anemometer to build up the measured wind vector in a steady flow is presented to illustrate the way the geometry of these sensors as well as the characteristics of aerodynamic disturbance on the acoustic path can lead to singularities in the transformation function that relates the measured (disturbed) wind vector with the real (corrected) wind vector, impeding the application of correction/calibration functions for some wind conditions. An implicit function theorem allows for the identification of those combinations of real wind conditions and design parameters that lead to undefined correction/ calibration functions. In general, orthogonal path sensors do not show problematic combination of parameters. However, some geometric sonic sensor designs, available in the market, with paths forming smaller angles could lead to undefined correction functions for some levels of aerodynamic disturbances and for certain wind directions. The parameters studied have a strong influence on the existence and number of singularities in the correction/ calibration function as well as on the number of singularities for some combination of parameters. Some conclusions concerning good design practices are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing use of very light structures in aerospace applications are given rise to the need of taking into account the effects of the surrounding media in the motion of a structure (as for instance, in modal testing of solar panels or antennae) as it is usually performed in the motion of bodies submerged in water in marine applications. New methods are in development aiming at to determine rigid-body properties (the center of mass position and inertia properties) from the results of oscillations tests (at low frequencies during modal testing, by exciting the rigid-body modes only) by using the equations of the rigid-body dynamics. As it is shown in this paper, the effect of the surrounding media significantly modifies the oscillation dynamics in the case of light structures and therefore this effect should be taken into account in the development of the above-mentioned methods. The aim of the paper is to show that, if a central point exists for the aerodynamic forces acting on the body, the motion equations for the small amplitude rotational and translational oscillations can be expressed in a form which is a generalization of the motion equations for a body in vacuum, thus allowing to obtain a physical idea of the motion and aerodynamic effects and also significantly simplifying the calculation of the solutions and the interpretation of the results. In the formulation developed here the translational oscillations and the rotational motion around the center of mass are decoupled, as is the case for the rigid-body motion in vacuum, whereas in the classical added mass formulation the six motion equations are coupled. Also in this paper the nonsteady motion of small amplitude of a rigid body submerged in an ideal, incompressible fluid is considered in order to define the conditions for the existence of the central point in the case of a three-dimensional body. The results here presented are also of interest in marine applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An engineering modification of blade element/momentum theory is applied to describe the vertical autorotation of helicopter rotors. A full non‐linear aerodynamic model is considered for the airfoils, taking into account the dependence of lift and drag coefficients on both the angle of attack and the Reynolds number. The proposed model, which has been validated in previous work, has allowed the identification of different autorotation modes, which depend on the descent velocity and the twist of the rotor blades. These modes present different radial distributions of driven and driving blade regions, as well as different radial upwash/downwash patterns. The number of blade sections with zero tangential force, the existence of a downwash region in the rotor disk, the stability of the autorotation state, and the overall rotor autorotation efficiency, are all analyzed in terms of the flight velocity and the characteristics of the rotor. It is shown that, in vertical autorotation, larger blade twist leads to smaller values of descent velocity for a given thrust generated by the rotor in the autorotational state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo ahonda en el conocimiento del viento urbano. La investigación pasa revista a la historia de la relación del viento y la ciudad y revisa tres pares de disciplinas implicadas en comprender mejor dicha relación: la arquitectura y el urbanismo, la meteorología y la climatología y, por último, la ingeniería aeroespacial y la aerodinámica civil. Se estudian el comportamiento y la fluidez del viento al desplazarse por cuerpos romos no fuselados (los edificios y la trama urbana), así como sus efectos dentro de la ciudad. Asimismo, se examinan las metodologías existentes para comprenderlo, medirlo y analizarlo, desde los estudios de proporción y modelamiento en túneles de viento hasta las simulaciones virtuales y las dinámicas de fluidos CFD. Posteriormente se reconoce un caso de estudio que permite analizar el viento como un factor aislado, pero desde los parámetros morfológicos de una ciudad en la que se generan patrones aerodinámicos muy característicos: Punta Arenas, la ciudad más austral del mundo, donde los vientos corren casi siempre desde la misma dirección, el “oeste”, a más de 33,3 m/s, lo que equivale a 120 Km/h. La hipótesis de la investigación es que la morfología del casco histórico de Punta Arenas genera patrones aerodinámicos que condicionan el bienestar en los espacios públicos. El objetivo general de la investigación es estudiar los efectos aerodinámicos presentes en la morfología urbana para mejorar la permanencia en los espacios públicos, proponiendo estrategias para el desarrollo morfológico y volumétrico de los cuerpos edificados. En el desarrollo del caso de estudio se reconocen, al interior del cañón urbano, las temperaturas, los índices de asoleamiento y sus conos de sombra, la dirección del viento y la visualización del vórtice al interior del cañón urbano, para determinar cómo estos factores impactan en el espacio público. Las conclusiones indican que los patrones aerodinámicos presentes en la morfología urbana conducen el viento hacia los espacios públicos que se encuentran o desprotegidos del viento o con excesiva turbulencias, por tanto, los patrones aerodinámicos inciden en el uso estancial de los espacios públicos, generando problemas mecánicos al peatón e incidiendo en la sensación térmica en dichos espacios. Ello permite confirmar que es posible modificar y mejorar el uso de los espacios públicos si somos capaces de modelar la morfología urbana con el fin de reorientar los patrones aerodinámicos que afectan significativamente a dichos espacios. ABSTRACT This work deepens into the knowledge of urban wind. The study reviews the history of the relationship between the wind and the city and reviews three pairs of disciplines involved in understanding better these relationship: Architecture and Urbanism, Meteorology and Climatology and, finally, Aerospace and Civil Aerodynamics. The behavior and flow of wind through blunt bodies not fairings (the buildings and the urban fabric) and its effects within the city are studied. Also, existing methodologies to understand, measure and analyze the wind are examined, from the studios of proportion and modeling in wind tunnels to virtual simulations and fluid dynamics CFD. Subsequently, a case study to analyze the wind as an isolated factor is recognized, but from the morphological parameters of a city where very characteristic aerodynamic patterns are generated: Punta Arenas, the southernmost city in the world, where the winds run almost always from the same direction, the "West", at more than 33.3 m/s, which is equivalent to 120 km/h. The research hypothesis is that the morphology of the historic center of Punta Arenas generates aerodynamic patterns that determine the well-being in public spaces. The overall objective of the research is to study the aerodynamic effects present in the urban morphology to improve retention in public spaces, proposing strategies for morphological and volumetric development of the built bodies. In developing the case study are recognized, within the urban canyon, temperatures, rates of sunlight and shadow cones, wind direction and visualization of the vortex into the urban canyon, to determine how these factors impact in public space. The findings indicate that the aerodynamic patterns in urban morphology lead wind to public spaces that are unprotected or find themselves in a condition of excessive wind or turbulence; therefore, aerodynamic patterns affect the use of public spaces, generating mechanical problems for pedestrians and affecting the thermal sensation in such spaces. This confirms that it is possible to modify and improve the use of public spaces if we are able to model the urban morphology in order to reorient the aerodynamic patterns that significantly affect those spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An engineering modification of blade element/momentum theory is applied to describe the vertical autorotation of helicopter rotors. A full non-linear aerodynamic model is considered for the airfoils, taking into account the dependence of lift and drag coefficients on both the angle of attack and the Reynolds number. The proposed model, which has been validated in previous work, has allowed the identification of different autorotation modes, which depend on the descent velocity and the twist of the rotor blades. These modes present different radial distributions of driven and driving blade regions, as well as different radial upwash/downwash patterns. The number of blade sections with zero tangential force, the existence of a downwash region in the rotor disk, the stability of the autorotation state, and the overall rotor autorotation efficiency, are all analyzed in terms of the flight velocity and the characteristics of the rotor. It is shown that, in vertical autorotation, larger blade twist leads to smaller values of descent velocity for a given thrust generated by the rotor in the autorotational state.