97 resultados para Tensioned Tether


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a fundamental contribution to limiting the increase of debris in the Space environment, a three-year project started on 1 November 2010 financed by the European Commission under the FP-7 Space Programme. It aims at developing a universal system to be carried on board future satellites launched into low Earth orbit (LEO), to allow de-orbiting at end of life. The operational system involves a conductive tape-tether left bare of insulation to establish anodic contact with the ambient plasma as a giant Langmuir probe. The project will size the three disparate dimensions of a tape for a selected de-orbit mission and determine scaling laws to allow system design for a general mission. It will implement control laws to restrain tether dynamics in/off the orbital plane; and will carry out plasma chamber measurements and numerical simulations of tether-plasma interaction. The project also involves the design and manufacturing of subsystems: electron-ejecting plasma contactors, an electric control and power module, interface elements, tether and deployment mechanisms, tether tape/end-mass as well as current collection plus free-fall, and hypervelocity impact tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collection of electrons from the ionosphere is the major problem facing high-power electrodynamic tethers. This article discusses a simple electron-collection concept which is free of most of the physical uncertainties associated with plasma contactors in the rarefied, magnetized environment of an orbiting tether. The idea is to leave exposed a fraction of the tether length near its anodic end, such that, when a positive bias develops locally with respect to the ambient plasma, and for a tether radius small compared with both thermal gyroradius and Debye length, electrons are collected in an orbital-motion-limited regime. It is shown that large currents can be drawn in this way with only moderate voltage drops. The concept is illustrated through a discussion of performance characteristics for generators and thrusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatively short electrodynamic tethers can extract orbital energy to "push" against a planetary magnetic field to achieve propulsion without the expenditure of propellant. The Propulsive Small Expendable Deployer System experiment will use the flight-proven Small Expendable Deployer System to deploy a 5-km bare aluminum tether from a Delta II upper stage to achieve ~0.4-N drag thrust, thus lowering the altitude of the stage. The experiment will use a predominantly bare tether for current collection in lieu of the endmass collector and insulated tether used on previous missions. The flight experiment is a precursor to a more ambitious electrodynamic tether upper-stage demonstration mission that will be capable of orbit-raising,lowering, and inclination changes, all using electrodynamic thrust. The expected performance of the tether propulsion system during the experiment is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodynamic tether thrusters can use the power provided by solar panels to drive a current in the tether and then the Lorentz force to push against the Earth's magnetic field, thereby achieving propulsion without the expenditure of onboard energy sources or propellant. Practical tether propulsion depends critically on being able to extract multiamp electron currents from the ionosphere with relatively short tethers (10 km or less) and reasonably low power. We describe a new anodic design that uses an uninsulated portion of the metallic tether itself to collect electrons. Because of the efficient collection of this type of anode, electrodynamic thrusters for reboost of the International Space Station and for an upper stage capable of orbit raising, lowering, and inclination changes appear to be feasible. Specifically, a 10-km-long bare tether, utilizing 10 kW of the space station power could save most of the propellant required for the station reboost over its 10-year lifetime. The propulsive small expendable deployer system experiment is planned to test the bare-tether design in space in the year 2000 by deploying a 5-km bare aluminum tether from a Delta II upper stage to achieve up to 0.5-N drag thrust, thus deorbiting the stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrodynamic tether can propel a spacecraft through a planetary magnetized plasma without using propellant. In the classical embodiment of an electrodynamic tether, the ambient magnetic fleld exerts a Lorentz force on the current along the tether, the ambient plasma providing circuit closure for the current A suggested propulsion scheme would hypothetically eliminate tether performance dependence on the plasma density by using a full wire loop to close the current circuit, and a superconductor to shield a loop segment from the external uniform magnetic fleld and cancel the Lorentz force on that segment. Here, we use basic electromagnetic laws to explain how such a scheme cannot produce a net force. Because there is no net current in the superconducting shield, the circulation of the magnetic field along a closed line outside the full cross section, in its plane, is just due to the current flowing in the loop segment. The presence of the superconducting shield simply moves the Lorentz force from the shielded loop segment to the shield itself and, as a result, the total magnetic force, acting on full loop plus shield, remains zero.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrodynamic tether system for power generation at Jupiter is presented that allows extracting energy from Jupiter's corotating plasmasphere while leaving the system orbital energy unaltered to first order. The spacecraft is placed in a polar orbit with the tether spinning in the orbital plane so that the resulting Lorentz force, neglecting Jupiter's magnetic dipole tilt, is orthogonal to the instantaneous velocity vector and orbital radius, hence affecting orbital inclination rather than orbital energy. In addition, the electrodynamic tether subsystem, which consists of two radial tether arms deployed from the main central spacecraft, is designed in such a way as to extract maximum power while keeping the resulting Lorentz torque constantly null. The power-generation performance of the system and the effect on the orbit inclination is evaluated analytically for different orbital conditions and verified numerically. Finally, a thruster-based inclination-compensation maneuver at apoapsis is added, resulting in an efficient scheme to extract energy from the plasmasphere of the planet with minimum propellant consumption and no inclination change. A tradeoff analysis is conducted showing that, depending on tether size and orbit characteristics, the system performance can be considerably higher than conventional power-generation methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current space environment, consisting of manmade debris and micrometeoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Bare electrodynamic tethers can provide an efficient mechanism for rapid deorbiting of satellites from low Earth orbit at end of life. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. The rates of fatal impact of orbital debris on round and tape tethers of equal length and mass, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 validates the analytical result and shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because deorbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3-year Project financed by the European Commission is aimed at developing a universal system to de-orbit satellites at their end of life, as a fundamental contribution to limit the increase of debris in the Space environment. The operational system involves a conductive tapetether left bare to establish anodic contact with the ambient plasma as a giant Langmuir probe. The Project will size the three disparate dimensions of a tape for a selected de-orbit mission and determine scaling laws to allow system design for a general mission. Starting at the second year, mission selection is carried out while developing numerical codes to implement control laws on tether dynamics in/off the orbital plane; performing numerical simulations and plasma chamber measurements on tether-plasma interaction; and completing design of subsystems: electronejecting plasma contactor, power module, interface elements, deployment mechanism, and tether-tape/end-mass. This will be followed by subsystems manufacturing and by currentcollection, free-fall, and hypervelocity impact tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Space applications of electrodynamic tethers, and basic issues and constraints on their operation are reviewed. The status of the bare-tether solution to the problem of effective electron collection from a rarefied magnetized plasma is revisited. Basic modes of tether operation are analyzed; design parameters and parametric domains where a bare electrodynamic tether is most efficient in deorbiting, rebooking, or power generation, are determined. Use of bare tethers for Radiation Belt Remediation and generation of electron beams for ionospheric research is considered. Teiher heating, arcing, and bowing or breaking, as well deployment strategies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Usual long, flexible, ED tethers kept vertical by the gravity gradient might be less efficient for deorbiting S/C in near-polar orbits than conventional (Hall, Ion) electrical thrusters. A trade-off study on this application is here presented for tethers kept horizontal and perpendicular to the orbital plane. A tether thus oriented must be rigid and short for structural reasons, requiring a non-convex cross section and a power supply as in the case of electrical thrusters. Very recent developments on bare-tether collection theory allow predicting the current collected by an arbitrary cross section. For the horizontal tether, structural considerations on length play the role of ohmic effects in vertical tethers, in determining the optimal contribution of tether mass to the overall deorbiting system. For a given deorbiting-mission impulse, tether-system mass is minimal at some optimal length that increases weakly with the impulse. The horizontal-tether system may beat both the vertical tether and the electrical thruster as regards mass requirements for a narrow length range centered at about 100 m, allowing, however, for a broad mission-impulse range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatively short electrodynamic tethers can use solar power to "push" against a planetary magnetic field to achieve propul sion without expenditure of propellant. The groundwork has been laid for this type of propulsion. Recent important milestones include retrieval of a tether in space (TSS-1, 1992), successful deployment of a 20-km-long tether in space (SEDS-1, 1993), and operation of an electrodynamic tether with tether current driven in both directions (PMG, 1993). The planned Propulsive Small Expendable Deployer System (ProSEDS) experiment will use the flight-proven Small Expendable Deployer System (SEDS) to deploy a 5-km bare copper tether from a Delta II upper stage to achieve -0,4 N drag thrust, thus deorbiting the stage, The experiment will use a predominantly "bare" tether for current collection in lieu of the endmass collector and insulated tether approach used on previous missions, Theory and ground-based plasma chamber testing indicate that the bare tether is a highly efficient current collector. The flight experiment is a precursor to utilization of the technology on the International Space tation (JSS) for reboost and the electrodynamic tether pper stage demonstration misión which will be capable of orbit raising, lowering, and inclination changes—all using electrodynamic thrust. In addition, the use of this type of propulsion may be attractive for future missions to Jupiter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A power generation scheme based on bare electrodynamic tethers (EDT), working in passive mode is investigated for the purpose of supplying power to scientific missions at Saturn. The system employs a spinning EDT on a lowaltitude polar orbit which permits to efficiently convert plasmasphere energy into useful power. After optimizing the tether design for power generation we compute the supplied power along the orbit and the impact of the Lorentz force on the orbital elements as function of the tether and orbit characteristics. Although uncertainties in the current ionosphere density modeling strongly affect the performance of the system the peak power density of the EDT appears be greater than conventional power systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bare electrodynamic tether (EDT) is a conductive thin wire or tape tens of kilometres long, which is kept taut in space by gravity gradient or spinning, and is left bare of insulation to collect (and carry) current as a cylindrical Langmuir probe in an ambient magnetized plasma. An EDT is a probe in mesothermal flow at highly positive (or negative) bias, with a large or extremely large 2D sheath, which may show effects from the magnetic self-field of its current and have electrons adiabatically trapped in its ram front. Beyond technical applications ranging from propellantless propulsion to power generation in orbit, EDTs allow broad scientific uses such as generating electron beams and artificial auroras; exciting Alfven waves and whistlers; odifying the radiation belts; and exploring interplanetary space and the Jovian magnetosphere. Asymptotic analysis, numerical simulations, laboratory tests, and planned missions on EDTs are reviewed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite de-orbiting and re-entry is essential to halting the continuous increase in orbital space debris. The BETS project, which ends this month, is making waves with a new tether solution that is faster and more resistant to damage than any other existing technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For long enough tethers, the coupling of the attitude and orbital dynamics may show non-negligible effects in the orbital motion of a tethered satellite about a central body. In the case of fast rotating tethers the attitude remains constant, on average, up to second order effects. Besides, for a tether rotating in a plane parallel to the equatorial plane of the central body, the attitude?orbit coupling effect is formally equal to the perturbation of the Keplerian motion produced by the oblateness of the central body and, therefore, may have a stabilizing effect in the orbital dynamics. In the case of a tethered satellite in a low lunar orbit, it is demonstrated that feasible tether lengths can help in modifying the actual map of lunar frozen orbits