134 resultados para Estructuras numéricas
Resumo:
Ejercicios de calculo de esfuerzos, dimensionado y comprobación de estructuras trianguladas.
Resumo:
Ejercicios de calculo de esfuerzos, dimensionado y comprobación de estructuras trianguladas.
Resumo:
Ejercicios de dimensionado y comprobación de vigas de alma llena.
Resumo:
La aparición de errores o pequeñas diferencias entre la situación ideal prevista y la real durante la ejecución o proyecto de una obra constituye un fenómeno inherente a la limitación humana. Las Normas Oficiales suelen recoger en su articulado tolerancias máximas admisibles para estos errores deducidos, muchas veces, mediante criterios empíricos. Un planteamiento acaso más racional será indicar los valores límites de las imperfecciones de la obra en función del nivel de seguridad adoptado. En este artículo, se estudia desde este punto de vista, la influencia de los errores de ejecución en el valor de la carga crítica de la estructura. Evidentemente, las imperfecciones no deben ser limitadas únicamente por criterios de estabilidad global de la estructura, puesto que existen otras causas de colapso de la misma, que pueden verse afectados más seriamente por las imperfecciones y por consiguiente ser más exigentes en los niveles de las tolerancias máximas. Las imperfecciones que se consideran aquí, corresponden a valores relativamente pequeños producidos por un conjunto de causas simultáneas y por lo tanto son susceptibles de un tratamiento estadístico. Se excluyen de este estudio las equivocaciones o errores groseros cuya descripción matemática mediante métodos probabilistas no es adecuada. Se utilizarán aquí la conjunción de dos técnicas de cálculo -un modelo estructural basado en la teoría de la inestabilidad elástica lineal y un modelo probabilista con distribución gaussiana o uniforme- que se desarrollan de un modo numérico mediante el procedimiento de simulación de Monte-Carlo. Se comprende que la extensión del procedimiento de Monte-Carlo al análisis de otros tipos de modelos estructurales más refinados o bien que consideren otros mecanismos de colapso, así como distintas imperfecciones, es directo a causa del carácter eminentemente numérico del método
Resumo:
El objetivo de esta publicación es desarrollar la fase segunda dentro del proceso de un cálculo estructural, que se designa con el nombre de cálculo de estructuras. Si bien existen muchos e importantes problemas que pueden ser incluidos dentro de este ámbito, aquí únicamente serán tratados aquellos que son específicos del análisis, es decir, los correspondientes al estudio de las relaciones entre las excitaciones estructurales (acciones) y las respuestas (resultados). Por lo tanto, se dejan de lado todos los problemas fundamentales de síntesis o proyecto de sistemas estructurales incluidos dentro del término diseño óptimo de estructuras, así como los relativos a la cada vez más importante rama del cálculo de estructuras denominada Teoría de la Identificación.
Resumo:
Se muestra un procedimiento de cálculo de estructuras constituidas por una más simple, que se repite bien mediante una rotación finita (estructuras cíclicas) o según una traslación (estructuras traslacionales). Es posible, según el método que se expone, obtener el comportamiento de la estructura bajo la acción de cargas arbitrarias, mediante el cálculo repetido de la estructura elemental modificada. De esta forma, estructuras con un número elevado de grados de libertad pueden ser analizadas con un esfuerzo computacional relativamente pequeño, el preciso para el estudio de una estructura de dimensión igual a la de la estructura elemental. Se muestran algunos ejemplos ilustrativos muy simples, así como una aplicación al caso práctico correspondiente a losas de tableros de puentes rectos de vigas.
Resumo:
Este libro sirve de texto para estudiantes de las Escuelas Técnicas, pero es de utilidad inmediata también para el profesional que busca comprender las raíces de los métodos de cálculo actuales y/o disponer de una herramienta que le permita resolver problemas inabordables con los métodos no computerizados (descripción de la editorial). Estas notas están dirigidas a personas que comiencen su aprendizaje en los métodos modernos de cálculo de estructuras. Se ha procurado mantener un tono elemental y sólo en muy contadas ocasiones se han avanzado temas que pueden requerir un tiempo de reflexión superior al que dedica a sus asignaturas un estudiante medio. En general, se ha pretendido desarrollar ideas, más que técnicas de computación, para que el lector se convenza de la potencia del modelo de razonamiento utilizado por los métodos proyectivos, cuya generalidad permite su aplicación a áreas muy distintas de la ciencia y de la técnica. No obstante, siguiendo la filosofía de la colección en la que se publica la obra, se ha dedicado también una parte sustancial del texto a la descripción de ciertos manejos informáticos y de un sencillo programa de ordenador que ha sido documentado cuidadosamente para que el principiante no encuentre inconveniente en desentrañar el procedimiento. Se espera con ello romper el sentimiento de misterio, mezcla de prevención y asombro, con que se ha intentado en ocasiones rodear un método de cálculo cuyas bases son absolutamente clásicas y cuya metodología entronca con la mejor tradición mecánica (extracto del prólogo).
Resumo:
Esta obra recopila un conjunto de problemas de cálculo clásico de estructuras, con el objetivo de ayudar al alumno que se inicia en el Cálculo de Estructuras a conocer y comprender el fenómeno estructural, mediante técnicas sencillas, que no exigen recursos informáticos importantes. De esta forma estará en condiciones no solo de asimilar posteriormente las posibilidades del cálculo matricial de estructuras, sino también, de comprobar a veces los resultados que muchos creen mágicos e infalibles del computador. El origen de estos problemas que se presentan es muy vario, algunos se remontan a mis años lejanos de estudiante, otros al libro clásico de ”Teoría de las Estructuras” de Timoshenko junto con otros que son cosecha de los autores y que se han propuesto en los distintos examenes de la Escuela.
Resumo:
Teoría y problemas de cálculo convencional de estructuras. Los temas tratados son los siguientes: 1. Estructuras reticuladas. Clasificación, Características de una barra. 2. Método de Cross. Estructuras intraslacionales. 3. Método de Cross. Estructura traslacional. 4. Líneas de influencia en estructuras entramados.
Resumo:
El objetivo de este artículo es intentar predecir las tendencias en esta clase tan importante de estructuras espaciales. Trata en primer lugar acerca de los mecanismos para el desarrollo de los puentes. A continuación se describe la evolución de los diferentes componentes de la tecnología de los puentes y su repercusión sobre los proyectos. Posteriormente se muestran algunos ejemplos representativos de proyectos actuales de puentes.
Resumo:
El rasgo más característico de la arquitectura tradicional china es el de sus cubiertas curvas. Existen, al menos, cinco formas básicas de las mismas, con algunas modificaciones tipológicas, cuyo trazado y disposición ha de interpretarse ineludiblemente desde el conocimiento de ancestrales técnicas de construcción en madera.
Resumo:
Apuntes de cálculo de estructuras reticuladas, que son aquellas en las que al ángulo relativo entre barras permanece constante, es decir existe la rigidez del nudo. Dentro de las estructuras reticulares, podemos encontrar estructuras intraslacionales, aquellas en las que los nudos no se mueven y traslacionales, en las que los nudos se mueven. En este manual se estudian las estructuras reticuladas intraslacionales. Se compone de las siguientes partes: VII-Introducción al cálculo de estructuras reticuladas. VIII-Resolución de estructuras reticuladas por el método de Cross. Estructuras reticuladas intraslacionales. IX.- Líneas de influencia de estructuras reticuladas intraslacionales.
Resumo:
El Cálculo matricial de estructuras corresponde a un planteamiento moderno y original del Análisis de Estructuras, en su acepción más genuina del término, de vuelta a los orígenes. Su desarrollo, y por lo tanto aprendizaje más eficaz, se realiza con la ayuda de un computador. Sin embargo, relegar al estudiante al simple papel de usuario de programas generales de cálculo de estructuras por computador, que puede utilizar como una misteriosa caja negra, sin comprensión de sus fundamentos, parece una penosa y poco formativa perspectiva educacional. Por otra parte, el desarrollo por el alumno de pequeños programas de cálculo, permite una adecuada y natural asimilación de algunos conceptos del cálculo matricial de estructuras, si bien exige un previo conocimiento de procedimientos numéricos e informativos y, particularmente, un esfuerzo, a veces desproporcionado, para un estudiante que sólo desea comprender pero no desarrollar nuevos programas de cálculo. En esta publicación se intenta un camino intermedio, en donde se da especial énfasis a los conceptos fundamentales de matriz de rigidez y cargas equivalentes de elementos y subestructuras. Conceptos que son útiles y prácticos, tanto para el futuro usuario como para el realizador de programas. Este hecho se puede comprobar en los modernos programas generales donde existen facilidades de subestructuración a diferentes niveles. Además, se incluyen aquí simples problemas de análisis matricial de estructuras que se plantean de un modo manual y que no precisan para su resolución, necesariamente, un computador. Por último se muestran ejemplos de uso de un programa general de computador, implementado en el Centro de Cálculo de la Universidad de Santander.
Resumo:
El Trabajo de Fin de Grado aborda el tema del Descubrimiento de Conocimiento en series numéricas temporales, abordando el análisis de las mismas desde el punto de vista de la semántica de las series. La gran mayoría de trabajos realizados hasta la fecha en el campo del análisis de series temporales proponen el análisis numérico de los valores de la serie, lo que permite obtener buenos resultados pero no ofrece la posibilidad de formular las conclusiones de forma que se puedan justificar e interpretar los resultados obtenidos. Por ello, en este trabajo se pretende crear una aplicación que permita realizar el análisis de las series temporales desde un punto de vista cualitativo, en contraposición al tradicional método cuantitativo. De esta forma, quedarán recogidos todos los elementos relevantes de la serie temporal que puedan servir de estudio en un futuro. Para abordar el objetivo propuesto se plantea un mecanismo para extraer de la serie temporal la información que resulta de interés para su análisis. Para poder hacerlo, primero se formaliza el conjunto de comportamientos relevantes del dominio, que serán los símbolos a mostrar en la salida de la aplicación. Así, el método que se ha diseñado e implementado transformará una serie temporal numérica en una secuencia simbólica que recoge toda la semántica de la serie temporal de partida y resulta más intuitiva y fácil de interpretar. Una vez que se dispone de un mecanismo para transformar las series numéricas en secuencias simbólicas, se pueden plantear todas las tareas de análisis sobre dichas secuencias de símbolos. En este trabajo, aunque no se entra en este post-análisis de estas series, sí se plantean distintos campos en los que se puede avanzar en el futuro. Por ejemplo, se podría hacer una medida de la similitud entre dos secuencias simbólicas como punto de partida para la tarea de comparación o la creación de modelos de referencia para análisis posteriores de las series temporales. ---ABSTRACT---This Final-year Project deals with the topic of Knowledge Discovery in numerical time series, addressing time series analysis from the viewpoint of the semantics of the series. Most of the research conducted to date in the field of time series analysis recommends analysing the values of the series numerically. This provides good results but prevents the conclusions from being formulated to allow justification and interpretation of the results. Thus, the purpose of this project is to create an application that allows the analysis of time series, from a qualitative point of view rather than a quantitative one. This way, all the relevant elements of the time series will be gathered for future studies. The design of a mechanism to extract the information that is of interest from the time series is the first step towards achieving the proposed objective. To do this, all the key behaviours in the domain are set, which will be the symbols shown in the output. The designed and implemented method transforms a numerical time series into a symbolic sequence that takes in all the semantics of the original time series and is more intuitive and easier to interpret. Once a mechanism for transforming the numerical series into symbolic sequences is created, the symbolic sequences are ready for analysis. Although this project does not cover a post-analysis of these series, it proposes different fields in which research can be done in the future. For instance, comparing two different sequences to measure the similarities between them, or the creation of reference models for further analysis of time series.
Resumo:
Este proyecto tiene por objeto el diseño de la protección catódica contra la corrosión de las boyas y las tuberías sumergidas en agua de mar de un terminal portuario de descarga de crudo. La protección catódica consiste en la igualación de los potenciales de las áreas anódicas y catódicas del material por el flujo de electrones suministrado. En el proyecto se han empleado los métodos de ánodos de sacrificio y de corriente impresa para analizar la protección catódica más adecuada de cada componente. Para los cálculos de los ánodos necesarios para la protección catódica se utilizó el procedimiento de la masa, seleccionando así el método, ánodos de sacrificio o corriente impresa, y los ánodos más apropiados para la protección catódica de las boyas y de las tuberías. ABSTRACT The aim of this project was to design the cathodic protection against corrosion of a crude oil unloading port terminal’s buoys and under sea water pipelines. The cathodic protection consists in the equating of anodic and cathodic material areas by the electrons flow supplied. In this project, sacrificial anodes and impressed current methods were used for analyze the most suitable cathodic protection for each component. For the cathodic protection required anodes calculations, the weight procedure was used, thereby selecting the method, sacrificial anodes or impressed current, and the most appropriate anodes, for the cathodic protection of the buoys and pipelines