146 resultados para ESFUERZOS Y DEFORMACIONES
Condicionantes de la adherencia y anclaje en el refuerzo de muros de fábrica con elementos de fibras
Resumo:
Es cada vez más frecuente la rehabilitación de patrimonio construido, tanto de obras deterioradas como para la adecuación de obras existentes a nuevos usos o solicitaciones. Se ha considerado el estudio del refuerzo de obras de fábrica ya que constituyen un importante número dentro del patrimonio tanto de edificación como de obra civil (sistemas de muros de carga o en estructuras principales porticadas de acero u hormigón empleándose las fábricas como cerramiento o distribución con elementos autoportantes). A la hora de reparar o reforzar una estructura es importante realizar un análisis de las deficiencias, caracterización mecánica del elemento y solicitaciones presentes o posibles; en el apartado 1.3 del presente trabajo se refieren acciones de rehabilitación cuando lo que se precisa no es refuerzo estructural, así como las técnicas tradicionales más habituales para refuerzo de fábricas que suelen clasificarse según se trate de refuerzos exteriores o interiores. En los últimos años se ha adoptado el sistema de refuerzo de FRP, tecnología con origen en los refuerzos de hormigón tanto de elementos a flexión como de soportes. Estos refuerzos pueden ser de láminas adheridas a la fábrica soporte (SM), o de barras incluidas en rozas lineales (NSM). La elección de un sistema u otro depende de la necesidad de refuerzo y tipo de solicitación predominante, del acceso para colocación y de la exigencia de impacto visual. Una de las mayores limitaciones de los sistemas de refuerzo por FRP es que no suele movilizarse la resistencia del material de refuerzo, produciéndose previamente fallo en la interfase con el soporte con el consecuente despegue o deslaminación; dichos fallos pueden tener un origen local y propagarse a partir de una discontinuidad, por lo que es preciso un tratamiento cuidadoso de la superficie soporte, o bien como consecuencia de una insuficiente longitud de anclaje para la transferencia de los esfuerzos en la interfase. Se considera imprescindible una caracterización mecánica del elemento a reforzar. Es por ello que el trabajo presenta en el capítulo 2 métodos de cálculo de la fábrica soporte de distintas normativas y también una formulación alternativa que tiene en cuenta la fábrica histórica ya que su caracterización suele ser más complicada por la heterogeneidad y falta de clasificación de sus materiales, especialmente de los morteros. Una vez conocidos los parámetros resistentes de la fábrica soporte es posible diseñar el refuerzo; hasta la fecha existe escasa normativa de refuerzos de FRP para muros de fábrica, consistente en un protocolo propuesto por la ACI 440 7R-10 que carece de mejoras por tipo de anclaje y aporta valores muy conservadores de la eficacia del refuerzo. Como se ha indicado, la problemática principal de los refuerzos de FRP en muros es el modo de fallo que impide un aprovechamiento óptimo de las propiedades del material. Recientemente se están realizando estudios con distintos métodos de anclaje para estos refuerzos, con lo que se incremente la capacidad última y se mantenga el soporte ligado al refuerzo tras la rotura. Junto con sistemas de anclajes por prolongación del refuerzo (tanto para láminas como para barras) se han ensayado anclajes con llaves de cortante, barras embebidas, o anclajes mecánicos de acero o incluso de FRP. Este texto resume, en el capítulo 4, algunas de las campañas experimentales llevadas a cabo entre los años 2000 y 2013 con distintos anclajes. Se observan los parámetros fundamentales para medir la eficacia del anclajes como son: el modo de fallo, el incremento de resistencia, y los desplazamientos que permite observar la ductilidad del refuerzo; estos datos se analizan en función de la variación de: tipo de refuerzo incluyéndose el tipo de fibra y sistema de colocación, y tipo de anclaje. Existen también parámetros de diseño de los propios anclajes. En el caso de barras embebidas se resumen en diámetro y material de la barra, acabado superficial, dimensiones y forma de la roza, tipo de adhesivo. En el caso de anclajes de FRP tipo pasador la caracterización incluye: tipo de fibra, sistema de fabricación del anclajes y diámetro del mismo, radio de expansión del abanico, espaciamiento longitudinal de anclajes, número de filas de anclajes, número de láminas del refuerzo, longitud adherida tras el anclaje; es compleja la sistematización de resultados de los autores de las campañas expuestas ya que algunos de estos parámetros varían impidiendo la comparación. El capítulo 5 presenta los ensayos empleados para estas campañas de anclajes, distinguiéndose entre ensayos de modo I, tipo tracción directa o arrancamiento, que servirían para sistemas NSM o para cuantificar la resistencia individual de anclajes tipo pasador; ensayos de modo II, tipo corte simple, que se asemeja más a las condiciones de trabajo de los refuerzos. El presente texto se realiza con objeto de abrir una posible investigación sobre los anclajes tipo pasador, considerándose que junto con los sistemas de barra embebida son los que permiten una mayor versatilidad de diseño para los refuerzos de FRP y siendo su eficacia aún difícil de aislar por el número de parámetros de diseño. Rehabilitation of built heritage is becoming increasingly frequent, including repair of damaged works and conditioning for a new use or higher loads. In this work it has been considered the study of masonry wall reinforcement, as most buildings and civil works have load bearing walls or at least infilled masonry walls in concrete and steel structures. Before repairing or reinforcing an structure, it is important to analyse its deficiencies, its mechanical properties and both existing and potential loads; chapter 1, section 4 includes the most common rehabilitation methods when structural reinforcement is not needed, as well as traditional reinforcement techniques (internal and external reinforcement) In the last years the FRP reinforcement system has been adopted for masonry walls. FRP materials for reinforcement were initially used for concrete pillars and beams. FRP reinforcement includes two main techniques: surface mounted laminates (SM) and near surface mounted bars (NSM); one of them may be more accurate according to the need for reinforcement and main load, accessibility for installation and aesthetic requirements. One of the main constraints of FRP systems is not reaching maximum load for material due to premature debonding failure, which can be caused by surface irregularities so surface preparation is necessary. But debonding (or delamination for SM techniques) can also be a consequence of insufficient anchorage length or stress concentration. In order to provide an accurate mechanical characterisation of walls, chapter 2 summarises the calculation methods included in guidelines as well as alternative formulations for old masonry walls as historic wall properties are more complicated to obtain due to heterogeneity and data gaps (specially for mortars). The next step is designing reinforcement system; to date there are scarce regulations for walls reinforcement with FRP: ACI 440 7R-10 includes a protocol without considering the potential benefits provided by anchorage devices and with conservative values for reinforcement efficiency. As noted above, the main problem of FRP masonry walls reinforcement is failure mode. Recently, some authors have performed studies with different anchorage systems, finding that these systems are able to delay or prevent debonding . Studies include the following anchorage systems: Overlap, embedded bars, shear keys, shear restraint and fiber anchors. Chapter 4 briefly describes several experimental works between years 2000 and 2013, concerning different anchorage systems. The main parameters that measure the anchorage efficiency are: failure mode, failure load increase, displacements (in order to evaluate the ductility of the system); all these data points strongly depend on: reinforcement system, FRP fibers, anchorage system, and also on the specific anchorage parameters. Specific anchorage parameters are a function of the anchorage system used. The embedded bar system have design variables which can be identified as: bar diameter and material, surface finish, groove dimensions, and adhesive. In FRP anchorages (spikes) a complete design characterisation should include: type of fiber, manufacturing process, diameter, fan orientation, anchor splay width, anchor longitudinal spacing and number or rows, number or FRP sheet plies, bonded length beyond anchorage devices,...the parameters considered differ from some authors to others, so the comparison of results is quite complicated. Chapter 5 includes the most common tests used in experimental investigations on bond-behaviour and anchorage characterisation: direct shear tests (with variations single-shear and double-shear), pullout tests and bending tests. Each of them may be used according to the data needed. The purpose of this text is to promote further investigation of anchor spikes, accepting that both FRP anchors and embedded bars are the most versatile anchorage systems of FRP reinforcement and considering that to date its efficiency cannot be evaluated as there are too many design uncertainties.
Resumo:
Durante muchos años, una de las constantes más claramente apuntadas por la mayor parte de los buceadores en la situación de la I + D en nuestro país, era la de la insuficiente coordinación entre los distintos sectores que componían su parte activa. No era sólo la descoordinación entre los diferentes grupos que realizaban tareas más o menos comunes; era también una descoordinación entre los diferentes departamentos ministeriales que llevaban a cabo funciones de I + D; era una desconexión entre los esfuerzos del sector académico y el sector productivo; y era también, finalmente, en muchos casos, un desenfoque entre los temas que se estudiaban aquí y los que se desarrollaban en los países de nuestro entorno geográfico. Todo ello, aunado a una situación que endémicamente servía de sustrato para ahogar cualquier intento racional de recuperación, ha conducido a un conjunto de esfuerzos que no han cristalizado casi nunca en realidades tangibles. La sociedad ha seguido bastante de espaldas a lo que la Ciencia y la Tecnología hacían y, éstas, a su vez se han desarrollado, también, de espaldas a lo que en ocasiones pedía la sociedad.
Resumo:
En el discurso se reivindica el papel actual de la ingeniería mecánica como impulsora del desarrollo de las máquinas. Comienza con una breve exposición de la evolución de las máquinas a lo largo de la historia y su influencia en el desarrollo económico y social. Igualmente, señala la importancia de otras áreas de la ingeniería en el desarrollo de las máquinas actuales y el carácter multidisciplinar del diseño y desarrollo de las máquinas actuales. Ante la nueva situación, el discurso analiza el papel que desempeña actualmente la ingeniería de máquinas. Asimismo, comprueba que la aportación de otras disciplinas ha llevado a la concepción de máquinas con soluciones, más eficientes y eficaces, que requieren nuevos avances de la ingeniería de máquinas. Finalmente, se muestran diversos ejemplos significativos de los avances requeridos para el diseño de las máquinas actuales, entre los que destacan los relativos al análisis dinámico y a la fatiga. Entre los problemas dinámicos, se analizan los casos del comportamiento de sistemas multicuerpos con holgura o sujetos a impactos, y la detección de grietas en rotores mediante la medida de vibraciones. Del análisis del comportamiento a fatiga, se destaca la importancia de la aplicación conjunta de la mecánica de la fractura y el método de las deformaciones locales, especialmente para el análisis del comportamiento de grietas microestructuralmente pequeñas.
Resumo:
En este discurso de ingreso se destacó la importancia de la Mecánica de Materiales y el Modelado Matemático en Biomedicina y, en particular, se mostraron algunas aportaciones relacionadas con el comportamiento funcional de tejidos biológicos. Más en concreto se discutió la importancia de la transdisciplinariedad en la investigación actual y el papel que en esa búsqueda de un lenguaje común entre disciplinas tienen el modelado matemático y la simulación computacional.En particular, en la nueva Biomedicina basada en la evidencia, la interacción transdisciplinar es esencial, como lo demuestran resultados tan evidentes como los dispositivos e implantes inteligentes, las nuevas técnicas de imagen médica, la aparición de órganos artificiales o las crecientemente importantes técnicas de Ingeniería Tisular y Terapias Génica y Celular. Uno de los aspectos de creciente estudio en los últimos años es la epigenética, es decir, el estudio de la influencia del entorno específico de cada individuo en su respuesta biológica. Uno de estos estímulos externos, que se está constatando como fundamental, corresponde a las deformaciones, y ello en todas las escalas: molecular, celular, tisular y orgánica, dando lugar a una nueva subdisciplina: la Mecanobiología de creciente interés. En ella se acoplan los fenómenos mecánicos (movimiento, deformaciones, tensiones,..) con los biológicos (respuesta celular, expresión génica, adaptación tisular, regeneración y morfogénesis orgánica, etc.) y, en general, con otros campos físicos como la bioquímica o la electricidad también acoplados en los procesos de señalización y expresión celular. De nuevo el modelado multiescala y multifísico de estos problemas es esencial en su comprensión última y en el diseño de nuevas estrategias quirúrgicas, terapéuticas o de diagnostico. En este discurso se mostraron los problemas y posibilidades de estas metodologías y su aplicación en problemas tales como el diseño de implantes, la remodelación reparación y morfogénesis óseas, así como en la planificación preoperatoria y cirugía virtual.
Resumo:
En la presente tesis se propone un estudio del Pantheon, y en general de las cúpulas clásicas romanas, partiendo de la relación entre la bibliografía y documentación histórica, y el análisis geométrico y constructivo de algunos de los edificios considerados. La variedad de dimensiones, geometrías y sistemas constructivos aplicados en lugares y condiciones diferentes es muy grande. La información conservadas en los restos de estas arquitecturas suponen todavía una fuente por descubrir y explorar. Entre los múltiples aspectos que surgen al ocuparse del Pantheon y en general de cúpulas clásicas romanas, en este trabajo de tesis doctoral se elige enfocar principalmente el estudio en la geometría del intradós de las cúpulas. La potencialidad del hormigón romano se expresa con especial evidencia en el diseñ o y construcción de las superficies internas de las bóvedas, donde se persigue la experimentación de geometrías distintas. La comprensión de las técnicas constructivas empleadas para generar estas formas e incrementar sus dimensiones es sin duda una parte fundamental de la investigación, y se configura como un marco de conocimientos necesarios para el análisis de las cúpulas. El trabajo se desarrolla gracias a la aplicación de métodos de levantamiento indirecto actuales, que permiten la restitución métrica de objetos complejos con agilidad y precisión. Mediante el uso correcto de los instrumentos se consigue estudiar estructuras inaccesibles sin la necesidad de establecer un contacto directo con las superficies a medir. El uso del método de la fotogrametría digital de imágenes cruzadas y del escáner láser impulsan un continuo estudio crítico de los sistemas y una comparación directa entre ellos, generando paralelamente la información necesaria para poder aportar algunas consideraciones sobre la conformación de los objetos estudiados. La investigación se desarrolla, por tanto, entre el estudio comparado de las herramientas y de los sistemas de medición y el análisis geométrico-constructivo propio de las arquitecturas seleccionadas. La tesis abarca el estudio de las cúpulas clásicas romanas seleccionando una serie de edificios desde los primeros ejemplos del siglo II a.C. hasta las ultimas construcciones del siglo IV d.C.. Basándose en las características del conjunto de los edificios tratados, se estudia el desarrollo de esas formas constructivas en el tiempo y se reconoce en ellos la presencia de algunos elementos recurrentes. Además, la posibilidad de observar los restos antiguos conservados parcialmente o totalmente permite avanzar una hipotética clasificación de las geometrías de los intradoses de las cúpulas, poniéndola en relación con su propio desarrollo histórico. La cúpula del Pantheon precisa de un análisis particular y detallado. El estudio intenso de ese objeto arquitectónico tan sorprendente se perpetua desde hace numerosos siglos y el monumento todavía ofrece interrogantes abiertos. Un levantamiento arquitectónico actual del intradós de la cúpula puede generar material útil para realizar estudios sobre su conformación. Debido a la notoriedad del monumento, sus increíbles características y su perfecto estado de conservación, el Pantheon ha sido representado gráficamente desde hace siglos. Desde las primeras representaciones bidimensionales en planta, alzado y sección de época renacentista hasta las más modernas restituciones mediante escáner láser tridimensional, el Pantheon queda documentado por numerosos autores, que operan en épocas y con herramientas distintas. La posibilidad de confrontar las restituciones gráficas del mismo objeto a lo largo de un periodo de tiempo tan extenso, abre la investigación hacia un estudio comparativo de las técnicas de levantamiento de la antigüedad. Entre las bóvedas clásicas romanas, el Pantheon se considera la expresión máxima de las posibilidades de las técnicas y materiales, siendo al mismo tiempo parte de una cadena de evolución continua de la forma en construcción. Episodios de la historia de la arquitectura romana anteriores o posteriores al Pantheon se prestan para un análisis comparado. Como casos de estudio especifico se eligen el llamado Templo de Mercurio en Baia, cerca de Nápoles, la sala circular de las Termas con Heliocaminus en la Villa Adriana y el Mausoleo de Santa Constanza en Roma. Los tres ejemplos comparten el mismo principio constructivo y la forma supuestamente semiesférica del intradós de la cúpula, aun presentando características diferentes que dependen de sus funciones, dimensiones, época y sistemas de construcción. El método empleado en los estudios realizados es la fotogrametría digital de imágenes cruzadas, que precisa de herramientas y programas informáticos de fácil alcance para cualquier operador. La funcionalidad y eficacia de este sistema permite operar en condiciones desfavorables y perseguir la precisión de la medición. Mediante el empleo de la fotogrametría digital de imágenes cruzadas se consigue desarrollar con gran eficacia el trabajo de restitución de los ejemplos analizados. Únicamente en el caso del Pantheon, a la restitución fotogramétrica se suma un levantamiento mediante escáner láser tridimensional. El empleo del escáner láser permite registrar una enorme cantidad de información en tiempos muy reducidos, además de asegurar unos elementos de referencia útiles para la orientación y escala de los modelos fotogramétricos. Considerado el uso actual y eficiente del escáner láser en la documentación del patrimonio arquitectónico y arqueológico, su aplicación contribuye con fuerza al desarrollo de este trabajo de investigación. La descripción de las herramientas y de las técnicas empleadas para realizar las restituciones gráficas se considera parte del levantamiento, como documentación fiel del trabajo realizado y, como consecuencia, de las medidas obtenidas. Por estas razones se dedica un apartado de la tesis a la explicación de las fases de los trabajos de restitución y a la descripción de las características técnicas de las herramientas empleadas para ello. Los programas informáticos integrados posibilitan la comparación entre los resultados para verificar la aproximación y exactitud de las restituciones. Se presta atención a la comparación entre distintos levantamientos de un mismo objeto realizados con un solo sistema, pero en repetidas fases, o con distintos sistemas y herramientas. Es de especial interés la comparación entre los resultados de los levantamientos del intradós de la cúpula del Pantheon realizados mediante fotogrametría digital de imágenes cruzadas y con el escáner láser tridimensional. Una observación crítica de los datos generales asícomo de los detalles de los modelos de restitución ofrece material suficiente para formular alguna consideración acerca de dos métodos de levantamiento muy distintos. Como en todo proceso de levantamiento parte de la exactitud de los resultados depende de la labor critica, interpretativa y manual del operador. El análisis contrastado entre las distintas versiones de restitución de un mismo objeto es útil para una mejor aproximación a las medidas reales. Para poder efectuar los análisis geométricos del intradós de las cúpulas, se introduce una fase de estudio critico de los datos derivados de los levantamientos. La investigación se basa en la búsqueda de un modelo geométrico que se aproxime a los puntos levantados y que se genere a partir de unos rigurosos cálculos de promedios. Del modelo de restitución de puntos, que mantiene las irregularidades propias del objeto construido, se pasa a la creación de un modelo regular definido por claras leyes geométricas. La comparación directa entre las posiciones individuales de los puntos levantados y el modelo geométrico contribuyen a la comprensión del objeto de estudio, detectando irregularidades o deformaciones donde existan, y ofreciendo unos datos objetivos y cuantificables. Los análisis desarrollados evidencian la importancia de integrar la restitución métrica de los edificios con el estudio de su historia, geometría y construcción. El levantamiento como sistema de entendimiento integral de la arquitectura estimula la continua revisión de los resultados y el estudio comparado de la información derivada del análisis directo del edificio, mientras que la documentación conservada enriquece la investigación. Los trabajos de levantamiento y análisis realizados generan documentación nueva, ofreciendo un estudio crítico de la documentación disponible sobre los argumentos tratados y difundiendo el conocimiento de detalles del estado actual de las cúpulas estudiadas. Sin embargo, los interrogantes sobre los sistemas constructivos empleados para la construcción de las cúpulas estudiadas, y en particular del Pantheon, quedan irresolutos. La abundancia de los argumentos tratados permite la posible continuidad del trabajo, según una visión dinámica de la investigación como evolución ininterrumpida. En particular, las observaciones documentadas en este estudio abren el campo hacia un planteamiento transversal y multidisciplinar, que pueda profundizar el conocimiento de los edificios antiguos. El patrimonio de la arquitectura clásica estásujeto al deterioro en el tiempo, por lo que un estudio sobre su estado actual puede contribuir a manifestar necesidades reales, reflejando el vinculo directo existente entre conservación y levantamiento arquitectónico.
Resumo:
El programa "ANISET" (Análisis de Niveles de Seguridad en Túneles) desarrollado por SINEX, S.A. constituye una herramienta de cálculo orientada a la realización de estudios de Fiabilidad de las estructuras de sostenimiento de túneles y galerías subterráneas. El desarrollo del Nuevo Método Austriaco de construcción de túneles (NATM) ha supuesto un gran avance de tecnificación en un tipo de obras tradicionalmente poco exigentes en lo que al cálculo de refiere. La aplicación de esta nueva metodología ha propiciado un gran desarrollo en la aplicación de métodos numéricos y de nuevos modelos de comportamiento para el estudio del problema de interacción terreno-sostenimiento. Sin embargo, la investigación en torno a procedimientos adecuados para la introducción de la seguridad en los cálculos no ha sido tan intensa, lo que ha creado un estado de cierta confusión entorno a este tema. Con este trabajo, se ha pretendido impulsar un avance en este terreno. Para ello se ha considerado que el mejor método era la aplicación de las técnicas de Fiabilidad Estructural en Nivel U, como de hecho se está realizando en muchos otros terrenos en el ámbito del cálculo estructural. Para realizar el programa, se ha tomado como base el modelo mecánico bidimensional desarrollado por P. Fritz (1984) que básicamente coincide con el aplicado en el programa SOSTENIM. En este modelo el terreno se considera un medio de comportamiento elastoplástico, de acuerdo al criterio de Mohr-Coulomb, sobre el que se realiza una excavación de sección circular. El sostenimiento se ha modelado teniendo en cuenta las aportaciones del hormigón proyectado, del acero de las armaduras y de las cerchas metálicas habitualmente utilizadas. Los Estados Límite considerados en el programa, para los cuales se han desarrollado las correspondientes funciones de fallo, son los siguientes: - Agotamiento de la capacidad resistente del terreno. Caracterizado por un radio de plastificación excesivo del terreno. - Agotamiento de la estructura, producido por la aparición de deformaciones superiores al máximo admisible por los materiales del sostenimiento. - Convergencia excesiva: el desplazamiento radial en el sostenimiento supera un máximo fijado por el proyectista en base a criterios prácticos de utilización, etc. El tratamiento de las incertidumbres para la estimación de los correspondientes índices de fiabilidad y probabilidades de fallo respecto a los 3 estados límite mencionados, responde básicamente al esquema propuesto por E. Rosenblueth (1981). Se espera que el enfoque eminentemente práctico dado al trabajo, y la sencillez de manejo del programa, permitan una fácil y útil aplicación del mismo.
Resumo:
Artículo sobre los retos que se plantea en la actualidad la ingeniería ante la innovación y los cambios. Los drásticos cambios que se están produciendo en el mundo, que afectan, como es lógico, a la profesión y a las Escuelas de Ingeniería, nos llevan a pensar en la necesidad de cambios en las maneras tradicionales de hacer las cosas. En este artículo se comenta que se hace necesario replantearse el tipo de formación que se imparte en las Escuelas, así como buscar las formas de reconocer la calidad de las Escuelas y los títulos mediante certificaciones. Igualmente, la mejora en la relación empresas-universidades en materia de I+D+i que habían supuesto las Plataformas Tecnológicas españolas se ven amenazadas por la fuerte disminución de fondos para investigación. Es necesario redoblar esfuerzos para la búsqueda de financiación de las universidades y para desarrollar herramientas que mejoren su conexión con el mundo empresarial y profesional.
Resumo:
La Teoría de Plasticidad es el nombre con que se designa a_ la disciplina de la Física que estudia el estado de un cuerpo deformado irreversiblemente, constituyendo la continuación de la bien establecida "Teoría de la Elasticidad". La Teoría de Plasticidad tiene como punto de partida los resultados experimentales sobre el comportamiento macroscópico de materiales sometidos a deformación, principalmente metales, y como objetivos fundamentales de la Teoría: primero, proveer de una descripción de las relaciones tensión-deformación para un material que se encuentra en estado elastoplástico, que explique en la forma mas aproximada posible los resultados experimentales, y segundo desarrollar técnicas de solución para la consecución de la distribución de tensiones en cuerpos permanentemente deformados. En definitiva, el comportamiento plástico de un material está caracterizado por una deformación, en parte irreversible, independiente del tiempo, que comienza a plantearse sólo cuando se ha - conseguido un cierto "nivel de tensión" determinado, nivel que puede variar con el estado de deformación inicial del material, de acuerdo con los resultados experimentales (efecto Bauschinger y endurecimiento por deformación). De acuerdo con ello, en general, son necesarios cuatro requisitos para la formación de una teoría que modele la deformación elastoplástica. Estos son: 1) .- Unas relaciones explícitas entre cargas, tensiones, deformaciones y movimientos que describan el comportamiento del material bajo condiciones elásticas, es decir antes del comienzo de la deformación,plástica. Estas relaciones se plantearán en el primer capítulo. 2) .- Un criterio de plastificación que defina los límites del comportamiento elástico, indicando el nivel de tensión a partir del cual comienza el flujo plástico. Algunos de estos criterios y su definición matemática se plantearán en el capítulo II. 3) .- Una relación entre tensión y deformación después del comienzo del flujo plástico, es decir cuando las deformaciones tienen ambas componentes,elástica y plástica. Este será el objeto del capítulo III. 4).- Un criterio de endurecimiento por deformación que defina la variación de la tensión de límite elástico. Varios de estos criterios se verán en los capítulos IV y V. Una vez establecida la Teoría se realizarán una serie de aplicaciones importantes a materiales especiales como son el suelo (capítulo VII) y hormigón (capítulo VIII), para terminar con el estudio de algunos métodos de resolución de problemas plásticos con ordenador (F.E.M y B.I.E.M) en los últimos capítulos. Citaremos a continuación, muy brevemente, las hipótesis que se plantean en las teorías de plasticidad más comunes, y que se tendrán en cuenta a partir de ahora, siempre que específicamente no se indique lo contrario. a).- Isotropía del material: Las propiedades de éste no varían con la dirección; b) .- Incompresibilidad debido a las dsformaciones plásticas: No hay cambio de volumen como consecuencia de las deformaciones plásticas; e).- Las deformaciones elásticas son pequeñas comparadas con las deformaciones plásticas. Por último, y a título de comentario, diremos que en realidad es absolutamente falso el referirse a "la" Teoría de la Plasticidad, ya que existen varias de estas teorías, y más aún, una multiplicidad enorme en la forma de aplicarlas a los distintos problemas. En cuanto a la resolución de problemas en régimen plástico, y si bien hasta hace relativamente poco tiempo la forma usual de resolver problemas de este tipo era a través de la teoría de líneas de deslizamiento, ya hoy se han desarrollado una gran cantidad de técnicas numéricas, encaminadas a la resolución de problemas con ordenador, siendo naturalmente, ésta última línea más moderna la que se seguirá en los siguientes capítulos. Para empezar, se dará una breve reseña histórica del desarrollo de las teorías de plasticidad, para pasar en el resto del capítulo, a recordar la forma, que para el medio contínuo ideal, tienen las leyes del movimiento, así como los artificios que permiten hablar de esfuerzos interiores al medio en estudio y fijar su solución espacio-temporal, para un material elástico, como una introducción fundamental al estado plástico, y que al mismo tiempo puede servir como índice de la notación a utilizar en el resto.
Resumo:
La construcción es una de las actividades más valiosas para la sociedad debido a la naturaleza de los servicios que ofrece y por el volumen de empleos y movimiento económico que genera. Por ello es un elemento fundamental para el desarrollo sustentable. Es una industria compleja, cada vez más dependiente del conocimiento. Debido a su naturaleza fragmentaria y temporal y la alta rotación de personal presenta grandes retos y complicaciones particulares. Estas dificultades en oportunidades pueden transformarse en problemas por la complejidad, localización geográfica o los requisitos técnicos, financieros e innovaciones de los proyectos. Debido a sus características, las construcciones sufren cambios en las condiciones planificadas. Con frecuencia estos cambios conducen a retrasos en la ejecución de los proyectos, costes superiores a los presupuestados y conflictos entre los clientes y los ejecutores. Esto genera problemas de competitividad que afectan tanto a países desarrollados como países en vías de desarrollo. Los problemas de la construcción tienen perniciosos efectos para la sociedad, que pierde recursos que deberían permitir mejores resultados en términos de calidad de vida y beneficios sociales y económicos. Debido a la importancia del sector y los ingentes recursos que se invierten en cada proyecto se justifican los máximos esfuerzos para lograr los mejores desempeños de esta industria. Éste interés ha orientado el desarrollo de investigaciones, para apoyar el logro de los objetivos de mejoramiento continuo y construcción sustentable. Los estudios desarrollados han permitido demostrar el valor añadido del conocimiento en todos los sectores productivos. Para la construcción, los conocimientos ofrecen indicadores de desempeño, datos y lecciones aprendidas provenientes de aciertos y errores. Estos deben conducir a aprendizajes fundamentales para sustentar su competitividad. Sin embargo, a pesar de los conocimientos disponibles y los avances en las técnicas de control gerencial y de proyectos, es alarmante la recurrencia de los problemas de construcción. Esta problemática se manifiesta con severidad en los proyectos de construcción industrial que se desarrollan para el sector petrolero, petroquímico y energético venezolano. El sector presenta evidentes necesidades para un mejor desempeño competitivo por la alta incidencia de retrasos de los proyectos, que implican pérdidas de gran parte de los recursos humanos, financieros, técnicos y conocimientos invertidos. Esta investigación plantea como objetivos analizar la importancia de la construcción y su sustentabilidad, los principales problemas que afectan el sector, la gestión del conocimiento y algunos modelos disponibles para gestionarlos. Igualmente examina las lecciones aprendidas y la productividad y competitividad, con particular atención a los problemas de competitividad venezolanos. Adicionalmente se evalúan las implicaciones del conocimiento como activo estratégico y se caracterizan las empresas de construcción industrial venezolanas. Para ello se identifican las dimensiones que sustentan la gestión del conocimiento en estas empresas, para finalmente determinar las que resultan más idóneas para el nuevo modelo a ser propuesto. Con estos objetivos se desarrolló el estudio empírico. Para ello fueron invitados a participar representantes de 105 empresas y expertos de construcción distintos, todos con experiencias de construcción al sector industrial venezolano. Se obtuvieron 112 respuestas en representación de 41 organizaciones y expertos diferentes. El trabajo de campo inició en Junio de 2012 y culminó en Noviembre de 2012. Los datos obtenidos fueron analizados con apoyo de técnicas estadísticas descriptivas y multivariables. Los objetivos de la investigación se alcanzaron ya que se logró caracterizar el sector de las construcciones industriales y se propuso un nuevo modelo de gestión del conocimiento adecuado a sus características. El nuevo modelo fue formulado atendiendo a criterios de sencillez, bajos costes y facilidad de adaptación para motivar su utilización en organizaciones de construcción industrial variadas. Con ello se busca que resulte de utilidad aún para las organizaciones más pequeñas, con menores recursos o aquellas que enfrentan entornos constructivos complicados. Por último se presentan algunas sugerencias para motivar la comprensión de los fenómenos estudiados en los grupos de interés de la construcción. Se propone analizar estos problemas desde las etapas iniciales de los estudios de ingeniería, de arquitectura, de construcción, de economía y administración. Igualmente se propone desarrollar acciones conjuntas de parte de los sectores académicos, gubernamentales, industriales y asociaciones para el mejoramiento competitivo y desarrollo sustentable global. La propuesta aporta datos sobre el sector constructivo venezolano en un área que presenta grandes carencias y propone un modelo innovador por su sencillez y orientación hacia el uso diario e intuitivo de los conocimientos como recursos fundamentales para la competitividad. Esta orientación puede tener trascendencia más allá del sector descrito, para apoyar la solución de problemas de otras industrias en entornos globales. ABSTRACT Construction is one of the most valuable activities for society due to the nature of the services offered and the number of jobs and revenues generated. Therefore it is a key element for sustainable development. Construction is a complex industry increasingly dependent on knowledge. Its temporary and fragmentary nature and the high staff turnover present great challenges and particular complications to construction. In some cases these conditions may evolve to serious problems because of the complexity, geographic location or even technical, financial and innovative requirements of each project. Due to their characteristics, constructions frequently undergo changes in planned conditions. Often these changes lead to delays in project completion, costs higher than budgeted and conflicts between clients and performers. This creates problems of competitiveness affecting both developed and developing countries. The construction problems have harmful effects on society, since it loses resources that would otherwise allow better results in terms of quality of life and social and economic benefits. The importance and the enormous resources invested in each project justify the efforts to achieve the best performance of this industry. This interest has guided the development of multiple research efforts to support the achievement of construction performance improvements and sustainable construction. The studies carried out have demonstrated the added value of knowledge in all productive sectors. For construction, knowledge offers performance indicators, data and lessons learned from successes and failures. These should lead to fundamental learning to sustain sector competitiveness. However, despite the available knowledge and advances in techniques and project management control, the recurrence of construction problems is alarming. This problem shows itself severely in industrial construction projects that are developed for the Venezuelan oil, petrochemical and energy sectors. These sectors have evident needs for better competitive performance because of the high incidence of project delays, involving loss of much of the human, financial, technical and knowledge resources invested. This research analyzes the importance of construction and sustainability, the main problems affecting the sector, knowledge and some models available to manage them. It also examines the lessons learned and the productivity and competitiveness, with particular attention to the problems of Venezuelan competitiveness. Additionally, the Venezuelan industrial construction companies are characterized evaluating the implications of knowledge as an strategic asset for construction. Moreover, the research evaluates the dimensions that support knowledge management in these companies, to finally identify those that are the most suitable for the new model to be proposed. With these objectives in mind the empirical study was developed. 105 different companies and experts with Venezuelan industrial construction experiences were invited to participate on the survey. 112 responses were obtained representing 41 different organizations and experts. Fieldwork started in June 2012 and ended in November 2012. The data obtained was analyzed with descriptive and multivariate statistical techniques. The research objectives were achieved since the industrial construction sector was characterized and a new management model was proposed based on the particular characteristics of these companies. The new model was formulated according to the criteria of simplicity, low cost and ease of adaptation. This was performed to motivate the use of the new model in various industrial construction organizations, even in smaller companies, with limited resources or those facing complex construction environments. Finally some suggestions to encourage understanding of the phenomena studied among construction stakeholders were proposed. The importance of studying these problems at an early stage of the engineering, architectural, construction, economic and administration studies is highlighted. Additionally, academic, government, industrial organizations and associations are invited to join efforts to improve the competitive and sustainable global development. The proposal provides data on the Venezuelan construction sector in an area that has large gaps and proposes a model which is innovative for its simplicity and suggests the daily and intuitive use of knowledge resources as a key issue to competitiveness. This orientation may have implications beyond the described sector to support the solution of problems of other industries in a global environment.
Resumo:
A través de los años las estructuras de hormigón armado han ido aumentando su cuota de mercado, sustituyendo a las estructuras de fábrica de piedra o ladrillo y restándole participación a las estructuras metálicas. Uno de los primeros problemas que surgieron al ejecutar las estructuras de hormigón armado, era cómo conectar una fase de una estructura de este tipo a una fase posterior o a una modificación posterior. Hasta los años 80-90 las conexiones de una fase de una estructura de hormigón armado, con otra posterior se hacían dejando en la primera fase placas de acero con garrotas embebidas en el hormigón fresco o barras grifadas recubiertas de poliestireno expandido. Una vez endurecido el hormigón se podían conectar nuevas barras, para la siguiente fase mediante soldadura a la placa de la superficie o enderezando las barras grifadas, para embeberlas en el hormigón fresco de la fase siguiente. Estos sistemas requerían conocer la existencia y alcance de la fase posterior antes de hormigonar la fase previa. Además requerían un replanteo muy exacto y complejo de los elementos de conexión. Otro problema existente en las estructuras de hormigón era la adherencia de un hormigón fresco a un hormigón endurecido previamente, ya que la superficie de contacto de ambos hormigones suponía un punto débil, con una adherencia baja. A partir de los años 80, la industria química de la construcción experimentó un gran avance en el desarrollo de productos capaces de generar una buena adherencia sobre el hormigón endurecido. Este avance tecnológico tenía aplicación tanto en la adherencia del hormigón fresco sobre el hormigón endurecido, como en la adherencia de barras post-instaladas en agujeros de hormigón endurecido. Este sistema se denominó “anclajes adherentes de barras de acero en hormigón endurecido”. La forma genérica de ejecutarlos es hacer una perforación cilíndrica en el soporte de hormigón, con una herramienta especifica como un taladro, limpiar la perforación, llenarla del material adherente y finalmente introducir la barra de acero. Los anclajes adherentes se dividen en anclajes cementosos y anclajes químicos, siendo estos últimos los más habituales, fiables, resistentes y fáciles de ejecutar. El uso del anclaje adherente de barras de acero en hormigón endurecido se ha extendido por todo el espectro productivo, siendo muy habitual tanto en construcción de obras de hormigón armado de obra civil y edificación, como en obras industriales, instalaciones o fijación de elementos. La ejecución de un anclaje de una barra de acero en hormigón endurecido depende de numerosas variables, que en su conjunto, o de forma aislada pueden afectar de forma notable a la resistencia del anclaje. Nos referimos a variables de los anclajes, que a menudo no se consideran tales como la dirección de la perforación, la máquina de perforación y el útil de perforación utilizado, la diferencia de diámetros entre el diámetro del taladro y la barra, el tipo de material de anclaje, la limpieza del taladro, la humedad del soporte, la altura del taladro, etc. La utilización en los últimos años de los hormigones Autocompactables, añade una variable adicional, que hasta ahora apenas ha sido estudiada. En línea con lo apuntado, la presente tesis doctoral tiene como objetivo principal el estudio de las condiciones de ejecución en la resistencia de los anclajes en hormigón convencional y autocompactable. Esta investigación se centra principalmente en la evaluación de la influencia de una serie de variables sobre la resistencia de los anclajes, tanto en hormigón convencional como en un hormigón autocompactable. Para este estudio ha sido necesaria la fabricación de dos soportes de hormigón sobre los cuales desarrollar los ensayos. Uno de los bloques se ha fabricado con hormigón convencional y el otro con hormigón autocompactable. En cada pieza de hormigón se han realizado 174 anclajes con barras de acero, variando los parámetros a estudiar, para obtener resultados de todas las variables consideradas. Los ensayos a realizar en ambos bloques son exactamente iguales, para poder comparar la diferencia entre un anclaje en un soporte de hormigón con vibrado convencional (HVC) y un hormigón autocompactante (HAC). De cada tipo de ensayo deseado se harán dos repeticiones en la misma pieza. El ensayo de arrancamiento de las barras se realizara con un gato hidráulico hueco, con un sistema de instrumentación de lectura y registro de datos en tiempo real. El análisis de los resultados, realizado con una potente herramienta estadística, ha permitido determinar y evaluar numéricamente la influencia de los variables consideradas en la resistencia de los anclajes realizados. Así mismo ha permitido diferenciar los resultados obtenidos en los hormigones convencionales y autocompactantes, tanto desde el punto de vista de la resistencia mecánica, como de las deformaciones sufridas en el arrancamiento. Se define la resistencia mecánica de un anclaje, como la fuerza desarrollada en la dirección de la barra, para hacer su arrancamiento del soporte. De la misma forma se considera desplazamiento, a la separación entre un punto fijo de la barra y otro del soporte, en la dirección de la barra. Dichos puntos se determinan cuando se ha terminado el anclaje, en la intersección de la superficie plana del soporte, con la barra. Las conclusiones obtenidas han permitido establecer qué variables afectan a la ejecución de los anclajes y en qué cuantía lo hacen, así como determinar la diferencia entre los anclajes en hormigón vibrado convencional y hormigón autocompactante, con resultados muy interesantes, que permiten valorar la influencia de dichas variables. Dentro de las conclusiones podemos destacar tres grupos, que denominaremos como de alta influencia, baja influencia y sin influencia. En todos los casos hay que hacer el estudio en términos de carga y de desplazamiento. Podemos considerar como de alta influencia, en términos de carga las variables de máquina de perforación y el material de anclaje. En términos de desplazamiento podemos considerar de alta influencia además de la máquina de perforación y el material de anclaje, el diámetro del taladro, así como la limpieza y humedad del soporte. Podemos considerar de baja influencia, en términos de carga las variables de tipo de hormigón, dirección de perforación, limpieza y humedad del soporte. En términos de desplazamiento podemos considerar de baja influencia el tipo de hormigón y la dirección de perforación. Podemos considerar en el apartado de “sin influencia”, en términos de carga las variables de diámetro de perforación y altura del taladro. En términos de desplazamiento podemos considerar como “sin influencia” la variable de altura del taladro. Podemos afirmar que las diferencias entre los valores de carga aumentan de forma muy importante en términos de desplazamiento. ABSTRACT Over the years the concrete structures have been increasing their market share, replacing the masonry structures of stone or brick and subtracting as well the participation of the metallic structures. One of the first problems encountered in the implementing of the reinforced concrete structures was connecting a phase structure of this type at a later stage or a subsequent amendment. Until the 80s and 90s the connections of one phase of a reinforced concrete structure with a subsequent first phase were done by leaving the steel plates embedded in the fresh concrete using hooks or bent bars coated with expanded polystyrene. Once the concrete had hardened new bars could be connected to the next stage by welding them to the surface plate or by straightening the bent bars to embed them in the fresh concrete of the next phase. These systems required a previous knowledge of the existence and scope of the subsequent phase before concreting the previous one. They also required a very precise and complex rethinking of the connecting elements. Another existing problem in the concrete structures was the adhesion of a fresh concrete to a previously hardened concrete, since the contact surface of both concretes leaded to a weak point with low adherence. Since the 80s, the chemicals construction industry experienced a breakthrough in the development of products that generate a good grip on the concrete. This technological advance had its application both in the grip on one hardened fresh concrete and in the adhesion of bar post-installed in holes of hardened concrete. This system was termed as adherent anchors of steel bars in hardened concrete. The generic way of executing this system is by firstly drilling a cylindrical hole in the concrete support using a specific tool such as a drill. Then, cleaning the bore and filling it with bonding material to lastly, introduce the steel bar. These adherent anchors are divided into cement and chemical anchors, the latter being the most common, reliable, durable and easy to run. The use of adhesive anchor of steel bars in hardened concrete has spread across the production spectrum turning itself into a very common solution in both construction of reinforced concrete civil engineering and construction, and industrial works, installations and fixing elements as well. The execution of an anchor of a steel bar in hardened concrete depends on numerous variables which together or as a single solution may significantly affect the strength of the anchor. We are referring to variables of anchors which are often not considered, such as the diameter difference between the rod and the bore, the drilling system, cleansing of the drill, type of anchor material, the moisture of the substrate, the direction of the drill, the drill’s height, etc. During recent years, the emergence of self-compacting concrete adds an additional variable which has hardly been studied so far. According to mentioned this thesis aims to study the main performance conditions in the resistance of conventional and self-compacting concrete anchors. This research is primarily focused on the evaluation of the influence of several variables on the strength of the anchoring, both in conventional concrete and self-compacting concrete. In order to complete this study it has been required the manufacture of two concrete supports on which to develop the tests. One of the blocks has been manufactured with conventional concrete and the other with self-compacting concrete. A total of 174 steel bar anchors have been made in each one of the concrete pieces varying the studied parameters in order to obtain results for all variables considered. The tests to be performed on both blocks are exactly the same in order to compare the difference between an anchor on a stand with vibrated concrete (HVC) and a self-compacting concrete (SCC). Each type of test required two repetitions in the same piece. The pulling test of the bars was made with a hollow jack and with an instrumentation system for reading and recording data in real time. The use of a powerful statistical tool in the analysis of the results allowed to numerically determine and evaluate the influence of the variables considered in the resistance of the anchors made. It has likewise enabled to differentiate the results obtained in the self-compacting and conventional concretes, from both the outlook of the mechanical strength and the deformations undergone by uprooting. The mechanical strength of an anchor is defined as the strength undergone in a direction of the bar to uproot it from the support. Likewise, the movement is defined as the separation between a fixed point of the bar and a fixed point from the support considering the direction of the bar. These points are only determined once the anchor is finished, with the bar, at the intersection in the flat surface of the support. The conclusions obtained have established which variables affect the execution of the anchors and in what quantity. They have also permitted to determine the difference between the anchors in vibrated concrete and selfcompacting concrete with very interesting results that also allow to assess the influence of these mentioned variables. Three groups are highlighted among the conclusions called high influence, low influence and no influence. In every case is necessary to perform the study in terms of loading and movement. In terms of loading, there are considered as high influence two variables: drilling machinery and anchorage material. In terms of movement, there are considered as high influence the drilling diameter and the cleaning and moisture of the support, besides the drilling machinery and the anchorage material. Variables such as type of concrete, drilling direction and cleaning and moisture of the support are considered of low influence in terms of load. In terms of movement, the type of concrete and the direction of the drilling are considered variables of low influence. Within the no influence section in terms of loading, there are included the diameter of the drilling and the height of the drill. In terms of loading, the height of the drill is considered as a no influence variable. We can affirm that the differences among the loading values increase significantly in terms of movement.
Resumo:
Debido a sus características de seguridad, los sistemas de señalización ferroviarios requieren una gran cantidad de pruebas para su verificación y validación durante las diferentes etapas de su ciclo de vida, y en particular durante la instalación y puesta en marcha de una nueva línea o rehabilitación de una línea existente, siendo esta última aún más complicada debido a los cortos períodos de tiempo disponibles durante la noche para los trabajos. Este proyecto tiene como objetivo desarrollar una herramienta para reducir los esfuerzos antes mencionados mediante la simulación de los diferentes subsistemas de una línea equipada con sistema CBTC, el cumplimiento de las interfaces entre los subsistemas y el uso dentro de la simulación de equipos reales. Con estas premisas se desarrolló un entorno de pruebas para equipos y datos de señalización para líneas equipadas con el sistema CBTC. Los objetivos del proyecto que fueron establecidos en el inicio del desarrollo y han sido cumplidos con el desarrollo que se presenta en este artículo son los siguientes: • Poder realizar ensayos reales de equipos CBTC y su integración: equipos embarcados, equipos de control de área, etc. • Poder realizar ensayos reales con otros elementos de señalización y su integración: enclavamientos y ATS. • Poder realizar validación de datos vía CBTC. Para lograr estos objetivos se han desarrollado diversas aplicaciones de simulación, de las cuales, los más importantes son las siguientes: infraestructura, trenes automáticos, simulación de sistemas de tren, herramienta de gestión de los escenarios de simulación, etc Este sistema ha sido desarrollado y está añadiendo actualmente nuevos módulos y funcionalidades para las empresas del Grupo Invensys: Westinghouse Rail Systems en el Reino Unido y Dimetronic Signals en España, y está en uso en las nuevas líneas CBTC bajo su responsabilidad.
Resumo:
Son muchos los deportistas jóvenes que presentan el potencial para poder obtener rendimientos elevados. Sin embargo, son muy pocos los que alcanzan un nivel internacional. Conseguir la excelencia en el deporte requiere grandes esfuerzos, recursos y tiempo. Cualquier pequeño avance, cualquier mínimo detalle que ayude a mejorar dicho proceso, que aumente las opciones de éxito de los distintos programas formativos, será excepcionalmente valorado por los entrenadores, deportistas y gestores. ¿Qué es lo que permite o provoca que un deportista si alcance los resultados esperados y otros no? ¿Qué factores favorecen el desarrollo del deportista? ¿Cómo diseñar el proceso de detección y desarrollo del talento?. La presente conferencia tiene como objetivo presentar el estado del arte en la detección y desarrollo del talento, ofreciendo al lector una visión general de cuales han sido las principales formas de afrontar este proceso, al mismo tiempo que se detallan los principales conceptos y factores que, hoy en día, se conocen como favorecedores o limitantes del desarrollo deportivo. Por ello, se ha dividido fundamentalmente en dos partes. La primera de ellas, hace referencia a las investigaciones realizadas en este ámbito, tanto desde el punto de vista cuantitativo como cualitativo. Se presentan las principales conclusiones de ambas líneas de investigación, de tal manera, que el lector pueda tener una idea general de cómo es el proceso formativo del deportista. La segunda parte de la conferencia presenta, dada las limitaciones existentes en las investigaciones realizadas hasta la fecha, nuevas alternativas al proceso de identificación y desarrollo del talento.
Resumo:
En este capítulo se reflexiona sobre la evolución en el siglo XIX de lo que en Italia solían llamar scienza delle construzioni. En dos palabras: se trata de la aplicación de modelos de cálculo basados en la mecánica racional para determinar la seguridad de las construcciones. En este sentido, el XIX ofrece un cambio radical respecto al panorama de siglos anteriores, en los que lo fundamental era la experiencia constructiva y el proceso lento; lento tanto en la formación de técnicos como en la materialización de obras, donde la falta de herramientas de cálculo para prever comportamientos condujo en ocasiones al uso de modelos físicos a escala reducida para demostrar la seguridad de las construcciones o la factibilidad de su proceso edilicio. El capítulo se refiere exclusivamente a modelos abstractos (ni siquiera a los ensayos de laboratorio que pusieron de manifiesto nuevos fenómenos), a pesar de lo cual conviene arrancar con cuatro ejemplos reales, uno por cada cuarto de siglo que pongan de manifiesto los cambios de enfoques producidos en la construcción El primero es una celebrada estructura de madera cuya seguridad fue comprobada mediante ensayos sobre elementos a escala real. Insuperable en la elegancia de su diseño, el segundo, el viaducto de las Cabrillas (1851), fue proyectado y construido en piedra por Lucio del Valle en la cuesta de Contreras. El tercer ejemplo podría ser un puente colgante o «colgado», como se denominaban en la época, de los numerosos que se construyeron en España en la segunda mitad de siglo, pero, por su envergadura y tipología, se ha decidido escoger un caso más tardío: el viaducto del Salado, en la línea de ferrocarril Linares-Almería, proyecto de José Olano (1897) llevado a cabo por la compañía Fives-Lille. El proceso de lanzamiento por empuje hasta entroncar con el túnel del estribo izquierdo fue presenciado en enero de 1899 por un grupo de alumnos de la Escuela de Caminos encabezados por su director, Rogelio Inchaurrandieta, y diferentes profesores, entre los que se encontraban Serafín Freart, encargado de Mecánica Aplicada, y Luis Gaztelu, profesor de Puentes. Con sus pilas de alrededor de 110 m de altura y sus vanos de otro tanto, es un buen ejemplo de lo que] avier Mantero la llama «la gran invención de todo el siglo XIX: la viga en celosía, invención de tanta o mayor trascendencia que la bóveda de piedra para el arco" (Manterola, 2006. Aunque las cerchas de bronce del Panteón de Roma, debidas a Apolodoro de Damasco, o los esquemas de Palladio y las cubiertas de inglesias góticas son precursores de esta tipología (Mainstone, 1975), está laro que sólo en el siglo XIX el cálculo permitió racionalizar los diseños y alcanzar la simplicidad y efectividad que Manterola reconoce como invención. Finalmente, se hace referencia al puente de Golbardo en Santander, uno de los primeros de hormigón armado en España (1900). Este material llegará a su pleno desarrollo en el siglo XX, no sin vencer la desconfianza de sucesivas generaciones. En resumen, a los materiales clásicos, madera y piedra, se añaden en el siglo XIX los hierros y aceros, así como finalmente, el hormigón. Ello motiva una reconsideración de la tipología, de las ideas sobre seguridad estructural, sobre los métodos constructivos y sobre el cálculo que produce la gran eclosión en la representación abstracta del comportamiento de las construcciones, lo cual sólo es posible gracias al progreso de las ciencias. En este capítulo se intentará, en un primer apartado, resumir la experiencia teórica hasta que Coulomb escribe su magistral ensayo. A continuación se tratarán someramente las diferentes líneas de trabajo generadas en países extranjeros y, finalmente, se dará una visión personal de los esfuerzos llevados a cabo en España, que, aún disponiendo de centros docentes perfectamente conectados con lo que sucedía en el extranjero, no fue capaz de generar ninguna aportación original al debate internacional.
Resumo:
En este trabajo se analiza la influencia del espesor de la junta de mortero en la resistencia a compresión de la fábrica de ladrillo cerámico bajo esfuerzos de compresión uniaxial. Además se estudia el progresivo agrietamiento del material durante el proceso de carga. Se han ensayado nueve muros y nueve pilares, combinando tres espesores de junta de mortero relizando medidas con ultrasonidos, además se han realizado medidas con extensómetros y esclerómetro. Los resultados obtenidos muestran que a menor espesor de junta mayor carga de rotura y mayor valor de la velocidad de pulso ultrasónico. La medida con ultrasonidos muestra una buena correlación con las medidas extensométricas y permite una eficaz detección del agrietamiento interior del material durante el proceso de rotura
Resumo:
En muchas áreas de la ingeniería, la integridad y confiabilidad de las estructuras son aspectos de extrema importancia. Estos son controlados mediante el adecuado conocimiento de danos existentes. Típicamente, alcanzar el nivel de conocimiento necesario que permita caracterizar la integridad estructural implica el uso de técnicas de ensayos no destructivos. Estas técnicas son a menudo costosas y consumen mucho tiempo. En la actualidad, muchas industrias buscan incrementar la confiabilidad de las estructuras que emplean. Mediante el uso de técnicas de última tecnología es posible monitorizar las estructuras y en algunos casos, es factible detectar daños incipientes que pueden desencadenar en fallos catastróficos. Desafortunadamente, a medida que la complejidad de las estructuras, los componentes y sistemas incrementa, el riesgo de la aparición de daños y fallas también incrementa. Al mismo tiempo, la detección de dichas fallas y defectos se torna más compleja. En años recientes, la industria aeroespacial ha realizado grandes esfuerzos para integrar los sensores dentro de las estructuras, además de desarrollar algoritmos que permitan determinar la integridad estructural en tiempo real. Esta filosofía ha sido llamada “Structural Health Monitoring” (o “Monitorización de Salud Estructural” en español) y este tipo de estructuras han recibido el nombre de “Smart Structures” (o “Estructuras Inteligentes” en español). Este nuevo tipo de estructuras integran materiales, sensores, actuadores y algoritmos para detectar, cuantificar y localizar daños dentro de ellas mismas. Una novedosa metodología para detección de daños en estructuras se propone en este trabajo. La metodología está basada en mediciones de deformación y consiste en desarrollar técnicas de reconocimiento de patrones en el campo de deformaciones. Estas últimas, basadas en PCA (Análisis de Componentes Principales) y otras técnicas de reducción dimensional. Se propone el uso de Redes de difracción de Bragg y medidas distribuidas como sensores de deformación. La metodología se validó mediante pruebas a escala de laboratorio y pruebas a escala real con estructuras complejas. Los efectos de las condiciones de carga variables fueron estudiados y diversos experimentos fueron realizados para condiciones de carga estáticas y dinámicas, demostrando que la metodología es robusta ante condiciones de carga desconocidas. ABSTRACT In many engineering fields, the integrity and reliability of the structures are extremely important aspects. They are controlled by the adequate knowledge of existing damages. Typically, achieving the level of knowledge necessary to characterize the structural integrity involves the usage of nondestructive testing techniques. These are often expensive and time consuming. Nowadays, many industries look to increase the reliability of the structures used. By using leading edge techniques it is possible to monitoring these structures and in some cases, detect incipient damage that could trigger catastrophic failures. Unfortunately, as the complexity of the structures, components and systems increases, the risk of damages and failures also increases. At the same time, the detection of such failures and defects becomes more difficult. In recent years, the aerospace industry has done great efforts to integrate the sensors within the structures and, to develop algorithms for determining the structural integrity in real time. The ‘philosophy’ has being called “Structural Health Monitoring” and these structures have been called “smart structures”. These new types of structures integrate materials, sensors, actuators and algorithms to detect, quantify and locate damage within itself. A novel methodology for damage detection in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (Principal Component Analysis) and other dimensional reduction techniques. The use of fiber Bragg gratings and distributed sensing as strain sensors is proposed. The methodology have been validated by using laboratory scale tests and real scale tests with complex structures. The effects of the variable load conditions were studied and several experiments were performed for static and dynamic load conditions, demonstrating that the methodology is robust under unknown load conditions.