64 resultados para User Influence, Micro-blogging platform, Action-based Network, Dynamic Model
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo los usuarios se sienten desbordados y no son capaces de procesar toda esa información a la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades de cada usuario ofreciendo una solucion personalizada. Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS entren en escena. Al ser un nuevo campo de investigación, esta tesis presenta las principales características de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus componentes (llamados canales), y proporciona una arquitectura de referencia. De igual forma, existe una falta de herramientas para describir servicios de automatización, y las reglas de automatización. A este respecto, esta tesis propone un modelo común que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data. Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el cual se actualiza de forma semi-automática. En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas, ii) desarrollar una ontología para el modelado de los componentes de TASs y automatizaciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de agentes para la asistencia a usuarios en la creación de automatizaciones. ABSTRACT The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social data-streams at the service of users, who no longer browse static web pages but interact with applications that present them contextual and relevant experiences. Given that each user is a potential source of events, a typical user often gets overwhelmed. To deal with that huge amount of data, multiple automation tools have emerged, covering from simple social media managers or notification aggregators to complex CRMs or smart-home Hub/Apps. As a downside, they cannot tailor to the needs of every single user. As a natural response to this downside, Task Automation Services broke in the Internet. They may be seen as a new model of mash-up technology for combining social streams, services and connected devices from an end-user perspective: end-users are empowered to connect those stream however they want, designing the automations they need. The numbers of those platforms that appeared early on shot up, and as a consequence the amount of platforms following this approach is growing fast. Being a novel field, this thesis aims to shed light on it, presenting and exemplifying the main characteristics of Task Automation Services, describing their components, and identifying several dimensions to classify them. This thesis coins the term Task Automation Services (TAS) by providing a formal definition of them, their components (called channels), as well a TAS reference architecture. There is also a lack of tools for describing automation services and automations rules. In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as the EWE ontology This model enables to compare channels and automations from different TASs, which has a high impact in interoperability; and enhances automations providing a mechanism to reason over external sources such as Linked Open Data. Based on this model, a dataset of components of TAS was built, harvesting data from the web sites of actual TASs. Going a step further towards this common model, an algorithm for categorizing them was designed, enabling their discovery across different TAS. Thus, the main contributions of the thesis are: i) surveying the state of the art on task automation and coining the term Task Automation Service; ii) providing a semantic common model for describing TAS components and automations; iii) populating a categorized dataset of TAS components, used to learn ontologies of particular domains from the TAS perspective; and iv) designing an agent architecture for assisting users in setting up automations, that is aware of their context and acts in consequence.
Resumo:
Este proyecto se incluye en una línea de trabajo que tiene como objetivo final la optimización de la energía consumida por un dispositivo portátil multimedia mediante la aplicación de técnicas de control realimentado, a partir de una modificación dinámica de la frecuencia de trabajo del procesador y de su tensión de alimentación. La modificación de frecuencia y tensión se realiza a partir de la información de realimentación acerca de la potencia consumida por el dispositivo, lo que supone un problema ya que no suele ser posible la monitorización del consumo de potencia en dispositivos de estas características. Este es el motivo por el que se recurre a la estimación del consumo de potencia, utilizando para ello un modelo de predicción. A partir del número de veces que se producen ciertos eventos en el procesador del dispositivo, el modelo de predicción es capaz de obtener una estimación de la potencia consumida por dicho dispositivo. El trabajo llevado a cabo en este proyecto se centra en la implementación de un modelo de estimación de potencia en el kernel de Linux. La razón por la que la estimación se implementa en el sistema operativo es, en primer lugar para lograr un acceso directo a los contadores del procesador. En segundo lugar, para facilitar la modificación de frecuencia y tensión, una vez obtenida la estimación de potencia, ya que esta también se realiza desde el sistema operativo. Otro motivo para implementar la estimación en el sistema operativo, es que la estimación debe ser independiente de las aplicaciones de usuario. Además, el proceso de estimación se realiza de forma periódica, lo que sería difícil de lograr si no se trabajase desde el sistema operativo. Es imprescindible que la estimación se haga de forma periódica ya que al ser dinámica la modificación de frecuencia y tensión que se pretende implementar, se necesita conocer el consumo de potencia del dispositivo en todo momento. Cabe destacar también, que los algoritmos de control se tienen que diseñar sobre un patrón periódico de actuación. El modelo de estimación de potencia funciona de manera específica para el perfil de consumo generado por una única aplicación determinada, que en este caso es un decodificador de vídeo. Sin embargo, es necesario que funcione de la forma más precisa posible para cada una de las frecuencias de trabajo del procesador, y para el mayor número posible de secuencias de vídeo. Esto es debido a que las sucesivas estimaciones de potencia se pretenden utilizar para llevar a cabo la modificación dinámica de frecuencia, por lo que el modelo debe ser capaz de continuar realizando las estimaciones independientemente de la frecuencia con la que esté trabajando el dispositivo. Para valorar la precisión del modelo de estimación se toman medidas de la potencia consumida por el dispositivo a las distintas frecuencias de trabajo durante la ejecución del decodificador de vídeo. Estas medidas se comparan con las estimaciones de potencia obtenidas durante esas mismas ejecuciones, obteniendo de esta forma el error de predicción cometido por el modelo y realizando las modificaciones y ajustes oportunos en el mismo. ABSTRACT. This project is included in a work line which tries to optimize consumption of handheld multimedia devices by the application of feedback control techniques, from a dynamic modification of the processor work frequency and its voltage. The frequency and voltage modification is performed depending on the feedback information about the device power consumption. This is a problem because normally it is not possible to monitor the power consumption on this kind of devices. This is the reason why a power consumption estimation is used instead, which is obtained from a prediction model. Using the number of times some events occur on the device processor, the prediction model is able to obtain a power consumption estimation of this device. The work done in this project focuses on the implementation of a power estimation model in the Linux kernel. The main reason to implement the estimation in the operating system is to achieve a direct access to the processor counters. The second reason is to facilitate the frequency and voltage modification, because this modification is also done from the operating system. Another reason to implement the estimation in the operating system is because the estimation must be done apart of the user applications. Moreover, the estimation process is done periodically, what is difficult to obtain outside the operating system. It is necessary to make the estimation in a periodic way because the frequency and voltage modification is going to be dynamic, so it needs to know the device power consumption at every time. Also, it is important to say that the control algorithms have to be designed over a periodic pattern of action. The power estimation model works specifically for the consumption profile generated by a single application, which in this case is a video decoder. Nevertheless, it is necessary that the model works as accurate as possible for each frequency available on the processor, and for the greatest number of video sequences. This is because the power estimations are going to be used to modify dynamically the frequency, so the model must be able to work independently of the device frequency. To value the estimation model precision, some measurements of the device power consumption are taken at different frequencies during the video decoder execution. These measurements are compared with the power estimations obtained during that execution, getting the prediction error committed by the model, and if it is necessary, making modifications and settings on this model.
Resumo:
Un nuevo sistema de gobernanza para afrontar los retos del siglo XXI en la educación universitaria en Perú basado en el modelo de análisis de políticas, surge de observar el efecto de la competencia en los mercados, de la distribución de los escasos recursos según productividad y rendimiento, y de la gestión ineficiente de las universidades ya que estos parámetros están cambiando los criterios de confianza y legitimidad del sistema universitario en Perú. Las universidades se perciben más como instituciones del sector público, mientras que los servicios que ofrecen deben más bien contribuir a la modernización de la sociedad emergente y a la economía del conocimiento. Las reformas universitarias- iniciadas en los años 80 - han estado inspiradas en las organizaciones universitarias exitosas que han logrado modificar su gobernanza y van dirigidas a transformar ciertas instituciones burocráticas en organizaciones capaces de desempeñar la función de actores en esta competición global por los recursos y los mejores talentos. En este contexto, la universidad peruana se enfrenta a dos grandes desafíos: el de adaptarse a las nuevas perspectivas mundiales, y el poder dar mejor respuesta a las demandas, necesidades y expectativas de la sociedad. Un cambio en el sistema de gobernanza para la educación superior universitaria dará una solución integral a estos desafíos permitiéndole enfrentar los problemas de la universidad para su desarrollo e inserción en las corrientes mundiales. La metodología planteada en la investigación es cualitativa parte del análisis de la realidad como un TODO, sin reducirlos a sus partes integrantes, con la interpretación de los hechos, buscando entender las variables que intervienen. Se propone una política para la educación universitaria en Perú que se permeabilice a la sociedad, cambiando el modelo de planificación de un modelo de reforma social a un modelo de análisis de políticas, donde el Estado Peruano actúe como único responsable de responder a la sociedad demandante como su representante legal, y con unos organismo externo e independiente que siente las bases de la práctica, como se está haciendo en muchos modelos universitarios del mundo. Esta investigación presenta una primera fase conceptual, que aborda la evolución histórica de las universidades en el Perú, analizando y clarificando las fuerzas impulsoras a través del tiempo y distinguir las principales líneas que le imprimen dirección y sentido a los cambios de una realidad educativa universitaria. Así mismo, en esta fase se hace un análisis de la situación actual de las universidades en el Perú para llegar a determinar en qué situación se encuentra y si está preparada para enfrentar los retos de la educación universitaria mundial, para esto se analizan los modelos universitarios de mayor prestigio en el mundo. El marco teórico anterior permite sentar, en una segunda fase de la investigación, las bases científicas del modelo que se propone: el modelo de planificación de análisis de políticas para el sistema universitario peruano. Este modelo de ámbito público propuesto para la educación universitaria peruana basa su estrategia en un modelo de planificación con un objetivo común: “Mejorar la calidad de la educación superior universitaria peruana con el fin de aumentar la empleabilidad y la movilidad de los ciudadanos así como la competitividad internacional de la educación universitaria en Perú”, y con unas líneas de acción concretadas en cuatro objetivos específicos: 1) competencias (genéricas y específicas de las áreas temáticas); 2) enfoques de enseñanza, aprendizaje y evaluación; 3) créditos académicos; 4) calidad de los programa. Así como los fundamentos metodológicos del modelo de análisis de políticas, utilizado como estructura política, teniendo en cuenta las características básicas del modelo: a) Planificación desde arriba; b) Se centra en la toma de decisiones; c) Separación entre conocimiento experto y decisión; d) El estudio de los resultados orienta el proceso decisor. Finalmente, se analiza una fase de validación del modelo propuesto para la educación superior universitaria peruana, con los avances ya realizados en Perú en temas de educación superior, como es, el actual contexto de la nueva Ley Universitaria N°30220 promulgada el 8 de julio de 2014, la creación del SUNEDU y la reorganización del SINEACE, que tienen como propósito atender la crisis universitaria centrada en tres ejes principales incluidos en la ley, considerados como bases para una reforma. Primero, el Estado asume la rectoría de las políticas educativas en todos los niveles educativos. El segundo aspecto consiste en instalar un mecanismo de regulación de la calidad que junto con la reestructuración de aquellos otros existentes debieran sentar las bases para que las familias y estudiantes tengan la garantía pública de que el servicio que se ofrece, sin importar sus características particulares, presenten un mínimo común de calidad y un tercer aspecto es que la ley se reafirma en que la universidad es un espacio de construcción de conocimiento basado en la investigación y la formación integral. Las finalidades, la estructura y organización, las formas de graduación, las características del cuerpo docente, la obligatoriedad por los estudios generales, etc., indican que la reflexión académica es el centro articulador de la vida universitaria. Esta validación también se ha confrontado con los resultados de las entrevistas cualitativas a juicio de experto que se han realizado a rectores de universidades públicas y privadas así como a rectores miembros de la ex ANR, miembros de organizaciones como CONCYTEC, IEP, CNE, CONEAU, ICACIT e investigadores en educación superior, con la finalidad de analizar la sostenibilidad del modelo propuesto en el tiempo. Los resultados evidencian, que en el sistema universitario peruano se puede implementar un cambio hacía un modelo de educación superior universitaria, con una política educativa que se base en un objetivo común claramente definido, un calendario para lograrlo y un conjunto objetivos específicos, con un cambio de estructura política de reforma social a un modelo de análisis de políticas. Así mismo se muestran los distintos aspectos que los interesados en la educación superior universitaria deben considerar, si se quiere ocupar un espacio en el futuro y si interesa que la universidad peruana pueda contribuir para que la sociedad se forje caminos posibles a través de una buena docencia que se refleje en su investigación, con alumnos internacionales, sobre todo, en los postgrados; con un investigación que se traduzca en publicaciones, patentes, etc., de impacto mundial, con relevancia en la sociedad porque contribuye a su desarrollo, concretándose en trabajos de muy diversos tipos, promovidos junto con empresas, gobiernos en sus diversos niveles, instituciones públicas o privadas, etc., para que aporten financiación a la universidad. ABSTRACT A new system of governance to meet the challenges of the twenty-first century university education in Peru based on the model of policy analysis, comes to observe the effect of market competition, distribution of scarce resources according to productivity and performance, and inefficient management of universities as these parameters are changing the criteria of trust and legitimacy of the university system in Peru. Universities are perceived more as public sector institutions, while the services provided should rather contribute to the modernization of society and the emerging knowledge economy. The-university reforms initiated in the 80s - have been inspired by successful university organizations that have succeeded in changing its governance and as attempting to transform certain bureaucratic institutions into organizations that act as actors in this global competition for resources and top talent. In this context, the Peruvian university faces two major challenges: to adapt to the new global outlook, and to better respond to the demands, needs and expectations of society. A change in the system of governance for university education give a comprehensive solution to address these challenges by allowing the problems of the university development and integration into global flows. The methodology proposed in this research is qualitative part of the analysis of reality as a whole, without reducing them to their constituent parts, with the interpretation of the facts, seeking to understand the variables involved. a policy for university education in Peru that permeabilizes society is proposed changing the planning model of a model of social reform a model of policy analysis, where the Peruvian State to act as the sole responsible for responding to the applicant as its legal representative, and with external and independent body that provides the basis of practice, as is being done in many university models in the world. This research presents an initial conceptual phase, which deals with the historical development of universities in Peru, analyzing and clarifying the driving forces over time and distinguish the main lines that give direction and meaning to changes in university educational reality. Also, at this stage an analysis of the current situation of universities in Peru is done to be able to determine what the situation is and whether it is prepared to meet the challenges of the global higher education, for this university models are analyzed most prestigious in the world. The above theoretical framework allows to lay in a second phase of research, the scientific basis of the model proposed: the planning model of policy analysis for the Peruvian university system. This proposed model of public sphere for the Peruvian college bases its strategy on a planning model with a common goal: "To improve the quality of the Peruvian university education in order to enhance the employability and mobility of citizens and the international competitiveness of higher education in Peru ", and lines of action materialized in four specific objectives: 1) competences (generic and specific subject areas); 2) approaches to teaching, learning and assessment; 3) credits; 4) quality of the program. As well as the methodological foundations of policy analysis model, used as political structure, taking into account the basic characteristics of the model: a) Planning from above; b) focuses on decision making; c) Separation between expertise and decision; d) The study of the results process guides the decision maker. Finally, a validation phase of the proposed Peruvian university higher education, with the progress already made in Peru on issues of higher education model is analyzed, as is the current context of the new University Law No. 30220 promulgated on July 8 2014, the creation of SUNEDU and reorganization of SINEACE, which are intended to serve the university crisis centered on three main areas included in the law, considered as the basis for reform. First, the State assumes the stewardship of education policies at all educational levels. The second aspect is to install a mechanism for regulating the quality along with the restructuring of those existing ones should lay the foundation for families and students to guarantee that public service is offered, regardless of their individual characteristics, are of common minimum quality and a third aspect is that the law reaffirms that the university is building a space of research-based knowledge and comprehensive training. The aims, structure and organization, forms of graduation, faculty characteristics, the requirement for the general studies, etc., indicate that the academic reflection is the coordinating center of university life. This validation has also been confronted with the results of qualitative interviews with expert judgment that has been made to directors of public and private universities as well as leading members of the former ANR members of organizations like CONCYTEC, IEP, CNE, CONEAU, ICACIT and researchers in higher education, in order to analyze the sustainability of the proposed model in time. The results show, that the Peruvian university system can implement a change to a model of university education, an educational policy based on clearly defined common goal, a timetable for achieving specific objectives set and, with a change social policy structure to a model of reform policy analysis. It also shows the various aspects that those interested in university education should consider, if you want to occupy a space in the future and if interested in the Peruvian university can contribute to society possible paths is forged through research good teaching, international students, especially in graduate programs; with research that results in publications, patents, etc., global impact, relevance to society because it contributes to their development taking shape in very different types of jobs, promoted with businesses, governments at various levels, public institutions or private, etc., to provide funding to the university.