65 resultados para Semantic Repository
Resumo:
This paper presents a Focused Crawler in order to Get Semantic Web Resources (CSR). Structured data web are available in formats such as Extensible Markup Language (XML), Resource Description Framework (RDF) and Ontology Web Language (OWL) that can be used for processing. One of the main challenges for performing a manual search and download semantic web resources is that this task consumes a lot of time. Our research work propose a focused crawler which allow to download these resources automatically and store them on disk in order to have a collection that will be used for data processing. CRS consists of three layers: (a) The User Interface Layer, (b) The Focus Crawler Layer and (c) The Base Crawler Layer. CSR uses as a selection policie the Shark-Search method. CSR was conducted with two experiments. The first one starts on December 15 2012 at 7:11 am and ends on December 16 2012 at 4:01 were obtained 448,123,537 bytes of data. The CSR ends by itself after to analyze 80,4375 seeds with an unlimited depth. CSR got 16,576 semantic resources files where the 89 % was RDF, the 10 % was XML and the 1% was OWL. The second one was based on the Web Data Commons work of the Research Group Data and Web Science at the University of Mannheim and the Institute AIFB at the Karlsruhe Institute of Technology. This began at 4:46 am of June 2 2013 and 1:37 am June 9 2013. After 162.51 hours of execution the result was 285,279 semantic resources where predominated the XML resources with 99 % and OWL and RDF with 1 % each one.
Resumo:
Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable.
Resumo:
El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.
Resumo:
To correctly evaluate semantic technologies and to obtain results that can be easily integrated, we need to put evaluations under the scope of a unique software quality model. This paper presents SemQuaRE, a quality model for semantic technologies. SemQuaRE is based on the SQuaRE standard and describes a set of quality characteristics specific to semantic technologies and the quality measures that can be used for their measurement. It also provides detailed formulas for the calculation of such measures. The paper shows that SemQuaRE is complete with respect to current evaluation trends and that it has been successfully applied in practice.
Resumo:
The conception of IoT (Internet of Things) is accepted as the future tendency of Internet among academia and industry. It will enable people and things to be connected at anytime and anyplace, with anything and anyone. IoT has been proposed to be applied into many areas such as Healthcare, Transportation,Logistics, and Smart environment etc. However, this thesis emphasizes on the home healthcare area as it is the potential healthcare model to solve many problems such as the limited medical resources, the increasing demands for healthcare from elderly and chronic patients which the traditional model is not capable of. A remarkable change in IoT in semantic oriented vision is that vast sensors or devices are involved which could generate enormous data. Methods to manage the data including acquiring, interpreting, processing and storing data need to be implemented. Apart from this, other abilities that IoT is not capable of are concluded, namely, interoperation, context awareness and security & privacy. Context awareness is an emerging technology to manage and take advantage of context to enable any type of system to provide personalized services. The aim of this thesis is to explore ways to facilitate context awareness in IoT. In order to realize this objective, a preliminary research is carried out in this thesis. The most basic premise to realize context awareness is to collect, model, understand, reason and make use of context. A complete literature review for the existing context modelling and context reasoning techniques is conducted. The conclusion is that the ontology-based context modelling and ontology-based context reasoning are the most promising and efficient techniques to manage context. In order to fuse ontology into IoT, a specific ontology-based context awareness framework is proposed for IoT applications. In general, the framework is composed of eight components which are hardware, UI (User Interface), Context modelling, Context fusion, Context reasoning, Context repository, Security unit and Context dissemination. Moreover, on the basis of TOVE (Toronto Virtual Enterprise), a formal ontology developing methodology is proposed and illustrated which consists of four stages: Specification & Conceptualization, Competency Formulation, Implementation and Validation & Documentation. In addition, a home healthcare scenario is elaborated by listing its well-defined functionalities. Aiming at representing this specific scenario, the proposed ontology developing methodology is applied and the ontology-based model is developed in a free and open-source ontology editor called Protégé. Finally, the accuracy and completeness of the proposed ontology are validated to show that this proposed ontology is able to accurately represent the scenario of interest.