167 resultados para González García, Francisco Javier
Resumo:
A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle.
Resumo:
Ferromanganese nodule fields and hardgrounds have recently been discovered in the Cadiz Contourite Channel in the Gulf of Cadiz (850–1000 m). This channel is part of a large contourite depositional system generated by the Mediterranean Outflow Water. Ferromanganese deposits linked to contourites are interesting tools for palaeoenviromental studies and show an increasing economic interest as potential mineral resources for base and strategic metals. We present a complete characterisation of these deposits based on submarine photographs and geophysical, petrographic, mineralogical and geochemical data. The genesis and growth of ferromanganese deposits, strongly enriched in Fe vs. Mn (av. 39% vs. 6%) in this contourite depositional system result from the combination of hydrogenetic and diagenetic processes. The interaction of the Mediterranean Outflow Water with the continental margin has led to the formation of Late Pleistocene–Holocene ferromanganese mineral deposits, in parallel to the evolution of the contourite depositional system triggered by climatic and tectonic events. The diagenetic growth was fuelled by the anaerobic oxidation of thermogenic hydrocarbons (δ13CPDB=−20 to −37‰) and organic matter within the channel floor sediments, promoting the formation of Fe–Mn carbonate nodules. High 87Sr/86Sr isotopic values (up to 0.70993±0.00025) observed in the inner parts of nodules are related to the influence of radiogenic fluids fuelled by deep-seated fluid venting across the fault systems in the diapirs below the Cadiz Contourite Channel. Erosive action of the Mediterranean Outflow Water undercurrent could have exhumed the Fe–Mn carbonate nodules, especially in the glacial periods, when the lower core of the undercurrent was more active in the study area. The growth rate determined by 230Thexcess/232Th was 113±11 mm/Ma, supporting the hypothesis that the growth of the nodules records palaeoenvironmental changes during the last 70 ka. Ca-rich layers in the nodules could point to the interaction between the Mediterranean Outflow Water and the North Atlantic Deep Water during the Heinrich events. Siderite–rhodochrosite nodules exposed to the oxidising seabottom waters were replaced by Fe–Mn oxyhydroxides. Slow hydrogenetic growth of goethite from the seawaters is observed in the outermost parts of the exhumed nodules and hardgrounds, which show imprints of the Mediterranean Outflow Water with low 87Sr/86Sr isotopic values (down to 0.70693±0.00081). We propose a new genetic and evolutionary model for ferromanganese oxide nodules derived from ferromanganese carbonate nodules formed on continental margins above the carbonate compensation depth and dominated by hydrocarbon seepage structures and strong erosive action of bottom currents. We also compare and discuss the generation of ferromanganese deposits in the Cadiz Contourite Channel with that in other locations and suggest that our model can be applied to ferromanganiferous deposits in other contouritic systems affected by fluid venting.
Resumo:
The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis.
Resumo:
The fracture behavior parallel to the fibers of an E-glass/epoxy unidirectional laminate was studied by means of three-point tests on notched beams. Selected tests were carried out within a scanning electron microscope to ascertain the damage and fracture micromechanisms upon loading. The mechanical behavior of the notched beam was simulated within the framework of the embedded cell model, in which the actual composite microstructure was resolved in front of the notch tip. In addition, matrix and interface properties were independently measured in situ using a nanoindentor. The numerical simulations very accurately predicted the macroscopic response of the composite as well as the damage development and crack growth in front of the notch tip, demonstrating the ability of the embedded cell approach to simulate the fracture behavior of heterogeneous materials. Finally, this methodology was exploited to ascertain the influence of matrix and interface properties on the intraply toughness.
Resumo:
A constitutive model is presented for the in-plane mechanical behavior of nonwoven fabrics. The model is developed within the context of the finite element method and provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element. The model is built upon the ensemble of three blocks, namely fabric, fibers and damage. The continuum tensorial formulation of the fabric response rigorously takes into account the effect of fiber rotation for large strains and includes the nonlinear fiber behavior. In addition, the various damage mechanisms experimentally observed (bond and fiber fracture, interfiber friction and fiber pull-out) are included in a phenomenological way and the random nature of these materials is also taken into account by means of a Monte Carlo lottery to determine the damage thresholds. The model results are validated with recent experimental results on the tensile response of smooth and notched specimens of a polypropylene nonwoven fabric.
Resumo:
The pattern of damage localization and fracture under uniaxial and biaxial tension was studied in glass–fiber nonwoven felts. The analyses were carried out within the framework of the finite-element simulation of plain and notched specimens in which the microstructure of the felt, made up of fiber bundles connected at the cross point through an organic binder, was explicitly represented. Following previous experimental observations, fracture by interbundle decohesion and energy dissipation by frictional sliding between the bundles were included in the model. It was found that the failure path in these materials was controlled by the maximum applied normal stress, regardless of the loading path, and that the failure locus under biaxial tension was well represented by the von Mises failure criteria. The notch sensitivity of the nonwoven felts was limited and the presence of a notch did not modify the failure path.
Resumo:
A methodology is presented to measure the fiber/matrix interface shear strength in composites. The strategy is based on performing a fiber push-in test at the central fiber of highly-packed fiber clusters with hexagonal symmetry which are often found in unidirectional composites with a high volume fraction of fibers. The mechanics of this test was analyzed in detail by means of three-dimensional finite element simulations. In particular, the influence of different parameters (interface shear strength, toughness and friction as well as fiber longitudinal elastic modulus and curing stresses) on the critical load at the onset of debonding was established. From the results of the numerical simulations, a simple relationship between the critical load and the interface shear strength is proposed. The methodology was validated in an unidirectional C/epoxy composite and the advantages and limitations of the proposed methodology are indicated.
Resumo:
Digital image correlation (DIC) is applied to analyzing the deformation mechanisms under transverse compression in a fiber-reinforced composite. To this end, compression tests in a direction perpendicular to the fibers were carried out inside a scanning electron microscope and secondary electron images obtained at different magnifications during the test. Optimum DIC parameters to resolve the displacement and strain field were computed from numerical simulations of a model composite and they were applied to micrographs obtained at different magnifications (250_, 2000_, and 6000_). It is shown that DIC of low-magnification micrographs was able to capture the long range fluctuations in strain due to the presence of matrix-rich and fiber-rich zones, responsible for the onset of damage. At higher magnification, the strain fields obtained with DIC qualitatively reproduce the non-homogeneous deformation pattern due to the presence of stiff fibers dispersed in a compliant matrix and provide accurate results of the average composite strain. However, comparison with finite element simulations revealed that DIC was not able to accurately capture the average strain in each phase.
Resumo:
The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.
Resumo:
The need for the use of another surveillance system when radar cannot be used is the reason for the development of the Multilateration (MLT) Systems. However, there are many systems that operate in the L-Band (960-1215MHz) that could produce interference between systems. At airports, some interference has been detected between transmissions of MLT systems (1030MHz and 1090MHz) and Distance Measuring Equipment (DME) (960-1215MHz).
Resumo:
El futuro proyecto SESAR (Europa)/NextGen program (USA) establece la necesidad de tener un control 4D (x,y,z,t) del espacio aéreo, por lo tanto es de vital importancia para tal fin el conocimiento a tiempo real de la velocidad del viento. Se pretenderá a causa de dichas necesidades, el cálculo de la estimación de las componentes del vector velocidad dentro de un dominio Ω (por ejemplo: área terminal de Madrid, cuya extensión esta caracterizada por unos 60000km2), para dicho desarrollo se hará uso de los valores puntuales del vector velocidad del viento conocidos a través de los mensajes ADS‐B transmitidos por las aeronaves circundantes.
Resumo:
La Universidad Politécnica de Madrid y la Fundación Sanitas firmaron un convenio en octubre de 2009 para la creación del primer Centro de Estudios sobre Deporte Inclusivo (CEDI) en España, con sede en la Facultad de Ciencias de la Actividad Física y del Deporte (INEF). Su objetivo principal es investigar, generar conocimiento y divulgar la información pertinente relativa al fenómeno de la inclusión de las personas con discapacidad en el deporte, difundiendo los beneficios que las actividades físicas y deportivas tienen para los participantes a la hora de mejorar su salud y favorecer su integración social.
Resumo:
El objetivo del presente estudio fue diseñar y aplicar un programa de intervención como modelo de práctica deportiva inclusiva, analizando el impacto que ejerce en la actitud hacia la discapacidad en jugadores que no la tienen. Para ello, se puso en práctica el “Campus Inclusivo de Baloncesto”, organizado por la Fundación Real Madrid, como actividad deportiva inclusiva donde la práctica del baloncesto sirve de contexto para una práctica normalizadora, ya que a él asisten participantes con y sin discapacidad física. El diseño del estudio fue de tipo experimental, utilizando el "Cuestionario de actitudes hacia las personas con discapacidad" (Reina, López, Jiménez, García-Calvo, y Hutzler, 2011), aplicándolo antes de la intervención, después y pasados 9 meses de la misma, a los 21 participantes sin discapacidad (17 hombres y 4 mujeres), con edades comprendidas entre los 8 y los 14 años. Se aplicaron la prueba de Wilcoxon y ANOVA de medidas repetidas, estableciendo el nivel de confianza en p≤0,05. Los resultados muestran cambios significativos en positivo sobre la actitud hacia las personas con discapacidad tras el desarrollo de la actividad y un mantenimiento de dichos cambios en el tiempo. Estos resultados sugieren la validez del diseño propuesto para promover cambios en la perspectiva de la inclusión en contextos de iniciación deportiva
Resumo:
Objetivo: Analizar la relación entre el nivel de actividad física registrada y el percibido en población con discapacidad física mediante acelerometría y cuestionario, así como estudiar las diferencias evaluadas con ambos instrumentos según nivel de actividad física personal y otras variables como el género o uso de la silla de ruedas. Metodología: La muestra la componen 37 sujetos con discapacidad física (28 hombres y 9 mujeres), con una edad media de 38 ±10,9 años. Se dividió a la muestra en tres grupos en función del número de horas de actividad física semanal: sedentarios (S, n = 8), practicantes habituales (PH, n = 13) y practicantes de alto rendimiento (AR, n = 16). Los sujetos llevaron un monitor metabólico de actividad física SenseWear Pro Armband (SWA) durante siete días, las 24 horas. Una vez retirado, se administró el cuestionario Physical Activity Scale for Individuals with Physical Disabilities (Escala de Actividad Física para Personas con Discapacidades Físicas) para medir la actividad física percibida, recogiéndose también datos antropo-métricos y personales. Resultados: La correlación de Pearson (n = 37) mostró relación entre el PASIPD y las variables METS promedio (r=0,52; p<0,01), gasto energético en activo (r=0,35; p<0,05) y duración de la actividad física (r=0,53; p<0,01). El PASIPD (en MET hr/día) arrojó los siguientes valores según grupo: S 8,55 ±4,35; PH 12,99 ±5,88; AR 27,41 ±19,66. Según grupos, el SWA registró, entre otras variables, los METs promedio (S 1,35 ±0,26; PH 1,46 ±0,19; AR 1,70 ±0,18) y la duración de la actividad física (S 10:33:07 ±07:47:42; PH 12:59:32 ±07:21:38; AR 22:22:26 ±07:58:58). El ANOVA mostró diferencias (p<0,05) entre grupos para el PASIPD y las citadas variables del SWA. Conclusiones: Este estudio confirma la idoneidad de utilizar de forma combinada un cuestionario y un monitor metabólico de actividad física en población con discapacidad física para la evaluación del nivel de actividad física en esta población
Resumo:
In this paper, the authors provide a methodology to design nonparametric permutation tests and, in particular, nonparametric rank tests for applications in detection. In the first part of the paper, the authors develop the optimization theory of both permutation and rank tests in the Neyman?Pearson sense; in the second part of the paper, they carry out a comparative performance analysis of the permutation and rank tests (detectors) against the parametric ones in radar applications. First, a brief review of some contributions on nonparametric tests is realized. Then, the optimum permutation and rank tests are derived. Finally, a performance analysis is realized by Monte-Carlo simulations for the corresponding detectors, and the results are shown in curves of detection probability versus signal-to-noise ratio