81 resultados para Explicit numerical method
Resumo:
Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze the performance (i.e., the I - V curve) of a commercial solar panel at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer's datasheet.
Resumo:
Correct modeling of the equivalent circuits regarding solar cell and panels is today an essential tool for power optimization. However, the parameter extraction of those circuits is still a quite difficult task that normally requires both experimental data and calculation procedures, generally not available to the normal user. This paper presents a new analytical method that easily calculates the equivalent circuit parameters from the data that manufacturers usually provide. The analytical approximation is based on a new methodology, since methods developed until now to obtain the aforementioned equivalent circuit parameters from manufacturer's data have always been numerical or heuristic. Results from the present method are as accurate as the ones resulting from other more complex (numerical) existing methods in terms of calculation process and resources.
Resumo:
An application of the Finite Element Method (FEM) to the solution of a geometric problem is shown. The problem is related to curve fitting i.e. pass a curve trough a set of given points even if they are irregularly spaced. Situations where cur ves with cusps can be encountered in the practice and therefore smooth interpolatting curves may be unsuitable. In this paper the possibilities of the FEM to deal with this type of problems are shown. A particular example of application to road planning is discussed. In this case the funcional to be minimized should express the unpleasent effects of the road traveller. Some comparative numerical examples are also given.
Resumo:
The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.
Resumo:
A nonlinear implicit finite element model for the solution of two-dimensional (2-D) shallow water equations, based on a Galerkin formulation of the 2-D estuaries hydrodynamic equations, has been developed. Spatial discretization has been achieved by the use of isoparametric, Lagrangian elements. To obtain the different element matrices, Simpson numerical integration has been applied. For time integration of the model, several schemes in finite differences have been used: the Cranck-Nicholson iterative method supplies a superior accuracy and allows us to work with the greatest time step Δt; however, central differences time integration produces a greater velocity of calculation. The model has been tested with different examples to check its accuracy and advantages in relation to computation and handling of matrices. Finally, an application to the Bay of Santander is also presented.
Resumo:
Examples of global solutions of the shell equations are presented, such as the ones based on the well known Levy series expansion. Also discussed are some natural extensions of the Levy method as well as the inherent limitations of these methods concerning the shell model assumptions, boundary conditions and geometric regularity. Finally, some open additional design questions are noted mainly related to the simultaneous use in analysis of these global techniques and the local methods (like the finite elements) to finding the optimal shell shape, and to determining the reinforcement layout.
Resumo:
El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.
Resumo:
Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.
Resumo:
A mathematical model for the group combustion of pulverized coal particles was developed in a previous work. It includes the Lagrangian description of the dehumidification, devolatilization and char gasification reactions of the coal particles in the homogenized gaseous environment resulting from the three fuels, CO, H2 and volatiles, supplied by the gasification of the particles and their simultaneous group combustion by the gas phase oxidation reactions, which are considered to be very fast. This model is complemented here with an analysis of the particle dynamics, determined principally by the effects of aerodynamic drag and gravity, and its dispersion based on a stochastic model. It is also extended to include two other simpler models for the gasification of the particles: the first one for particles small enough to extinguish the surrounding diffusion flames, and a second one for particles with small ash content when the porous shell of ashes remaining after gasification of the char, non structurally stable, is disrupted. As an example of the applicability of the models, they are used in the numerical simulation of an experiment of a non-swirling pulverized coal jet with a nearly stagnant air at ambient temperature, with an initial region of interaction with a small annular methane flame. Computational algorithms for solving the different stages undergone by a coal particle during its combustion are proposed. For the partial differential equations modeling the gas phase, a second order finite element method combined with a semi-Lagrangian characteristics method are used. The results obtained with the three versions of the model are compared among them and show how the first of the simpler models fits better the experimental results.
Resumo:
Dentro de los materiales estructurales, el magnesio y sus aleaciones están siendo el foco de una de profunda investigación. Esta investigación está dirigida a comprender la relación existente entre la microestructura de las aleaciones de Mg y su comportamiento mecánico. El objetivo es optimizar las aleaciones actuales de magnesio a partir de su microestructura y diseñar nuevas aleaciones. Sin embargo, el efecto de los factores microestructurales (como la forma, el tamaño, la orientación de los precipitados y la morfología de los granos) en el comportamiento mecánico de estas aleaciones está todavía por descubrir. Para conocer mejor de la relación entre la microestructura y el comportamiento mecánico, es necesaria la combinación de técnicas avanzadas de caracterización experimental como de simulación numérica, a diferentes longitudes de escala. En lo que respecta a las técnicas de simulación numérica, la homogeneización policristalina es una herramienta muy útil para predecir la respuesta macroscópica a partir de la microestructura de un policristal (caracterizada por el tamaño, la forma y la distribución de orientaciones de los granos) y el comportamiento del monocristal. La descripción de la microestructura se lleva a cabo mediante modernas técnicas de caracterización (difracción de rayos X, difracción de electrones retrodispersados, así como con microscopia óptica y electrónica). Sin embargo, el comportamiento del cristal sigue siendo difícil de medir, especialmente en aleaciones de Mg, donde es muy complicado conocer el valor de los parámetros que controlan el comportamiento mecánico de los diferentes modos de deslizamiento y maclado. En la presente tesis se ha desarrollado una estrategia de homogeneización computacional para predecir el comportamiento de aleaciones de magnesio. El comportamiento de los policristales ha sido obtenido mediante la simulación por elementos finitos de un volumen representativo (RVE) de la microestructura, considerando la distribución real de formas y orientaciones de los granos. El comportamiento del cristal se ha simulado mediante un modelo de plasticidad cristalina que tiene en cuenta los diferentes mecanismos físicos de deformación, como el deslizamiento y el maclado. Finalmente, la obtención de los parámetros que controlan el comportamiento del cristal (tensiones críticas resueltas (CRSS) así como las tasas de endurecimiento para todos los modos de maclado y deslizamiento) se ha resuelto mediante la implementación de una metodología de optimización inversa, una de las principales aportaciones originales de este trabajo. La metodología inversa pretende, por medio del algoritmo de optimización de Levenberg-Marquardt, obtener el conjunto de parámetros que definen el comportamiento del monocristal y que mejor ajustan a un conjunto de ensayos macroscópicos independientes. Además de la implementación de la técnica, se han estudiado tanto la objetividad del metodología como la unicidad de la solución en función de la información experimental. La estrategia de optimización inversa se usó inicialmente para obtener el comportamiento cristalino de la aleación AZ31 de Mg, obtenida por laminado. Esta aleación tiene una marcada textura basal y una gran anisotropía plástica. El comportamiento de cada grano incluyó cuatro mecanismos de deformación diferentes: deslizamiento en los planos basal, prismático, piramidal hc+ai, junto con el maclado en tracción. La validez de los parámetros resultantes se validó mediante la capacidad del modelo policristalino para predecir ensayos macroscópicos independientes en diferentes direcciones. En segundo lugar se estudió mediante la misma estrategia, la influencia del contenido de Neodimio (Nd) en las propiedades de una aleación de Mg-Mn-Nd, obtenida por extrusión. Se encontró que la adición de Nd produce una progresiva isotropización del comportamiento macroscópico. El modelo mostró que este incremento de la isotropía macroscópica era debido tanto a la aleatoriedad de la textura inicial como al incremento de la isotropía del comportamiento del cristal, con valores similares de las CRSSs de los diferentes modos de deformación. Finalmente, el modelo se empleó para analizar el efecto de la temperatura en el comportamiento del cristal de la aleación de Mg-Mn-Nd. La introducción en el modelo de los efectos non-Schmid sobre el modo de deslizamiento piramidal hc+ai permitió capturar el comportamiento mecánico a temperaturas superiores a 150_C. Esta es la primera vez, de acuerdo con el conocimiento del autor, que los efectos non-Schmid han sido observados en una aleación de Magnesio. The study of Magnesium and its alloys is a hot research topic in structural materials. In particular, special attention is being paid in understanding the relationship between microstructure and mechanical behavior in order to optimize the current alloy microstructures and guide the design of new alloys. However, the particular effect of several microstructural factors (precipitate shape, size and orientation, grain morphology distribution, etc.) in the mechanical performance of a Mg alloy is still under study. The combination of advanced characterization techniques and modeling at several length scales is necessary to improve the understanding of the relation microstructure and mechanical behavior. Respect to the simulation techniques, polycrystalline homogenization is a very useful tool to predict the macroscopic response from polycrystalline microstructure (grain size, shape and orientation distributions) and crystal behavior. The microstructure description is fully covered with modern characterization techniques (X-ray diffraction, EBSD, optical and electronic microscopy). However, the mechanical behaviour of single crystals is not well-known, especially in Mg alloys where the correct parameterization of the mechanical behavior of the different slip/twin modes is a very difficult task. A computational homogenization framework for predicting the behavior of Magnesium alloys has been developed in this thesis. The polycrystalline behavior was obtained by means of the finite element simulation of a representative volume element (RVE) of the microstructure including the actual grain shape and orientation distributions. The crystal behavior for the grains was accounted for a crystal plasticity model which took into account the physical deformation mechanisms, e.g. slip and twinning. Finally, the problem of the parametrization of the crystal behavior (critical resolved shear stresses (CRSS) and strain hardening rates of all the slip and twinning modes) was obtained by the development of an inverse optimization methodology, one of the main original contributions of this thesis. The inverse methodology aims at finding, by means of the Levenberg-Marquardt optimization algorithm, the set of parameters defining crystal behavior that best fit a set of independent macroscopic tests. The objectivity of the method and the uniqueness of solution as function of the input information has been numerically studied. The inverse optimization strategy was first used to obtain the crystal behavior of a rolled polycrystalline AZ31 Mg alloy that showed a marked basal texture and a strong plastic anisotropy. Four different deformation mechanisms: basal, prismatic and pyramidal hc+ai slip, together with tensile twinning were included to characterize the single crystal behavior. The validity of the resulting parameters was proved by the ability of the polycrystalline model to predict independent macroscopic tests on different directions. Secondly, the influence of Neodymium (Nd) content on an extruded polycrystalline Mg-Mn-Nd alloy was studied using the same homogenization and optimization framework. The effect of Nd addition was a progressive isotropization of the macroscopic behavior. The model showed that this increase in the macroscopic isotropy was due to a randomization of the initial texture and also to an increase of the crystal behavior isotropy (similar values of the CRSSs of the different modes). Finally, the model was used to analyze the effect of temperature on the crystal behaviour of a Mg-Mn-Nd alloy. The introduction in the model of non-Schmid effects on the pyramidal hc+ai slip allowed to capture the inverse strength differential that appeared, between the tension and compression, above 150_C. This is the first time, to the author's knowledge, that non-Schmid effects have been reported for Mg alloys.
Resumo:
The basic equations for modelling two-dimensional hydrodynamics and transport in estuaries and coastal regions have been developed. By using the finite element method, it is possible to transform the model into a discretized counterpart. The model has been applied in order to study the dispersion of an effluent within the Bay of Santander. The results obtained by means of a computer program are discussed.
Resumo:
The two-body problem subject to a constant radial thrust is analyzed as a planar motion. The description of the problem is performed in terms of three perturbation methods: DROMO and two others due to Deprit. All of them rely on Hansen?s ideal frame concept. An explicit, analytic, closed-form solution is obtained for this problem when the initial orbit is circular (Tsien problem), based on the DROMO special perturbation method, and expressed in terms of elliptic integral functions. The analytical solution to the Tsien problem is later used as a reference to test the numerical performance of various orbit propagation methods, including DROMO and Deprit methods, as well as Cowell and Kustaanheimo?Stiefel methods.
Resumo:
The design of shell and spatial structures represents an important challenge even with the use of the modern computer technology.If we concentrate in the concrete shell structures many problems must be faced,such as the conceptual and structural disposition, optimal shape design, analysis, construction methods, details etc. and all these problems are interconnected among them. As an example the shape optimization requires the use of several disciplines like structural analysis, sensitivity analysis, optimization strategies and geometrical design concepts. Similar comments can be applied to other space structures such as steel trusses with single or double shape and tension structures. In relation to the analysis the Finite Element Method appears to be the most extended and versatile technique used in the practice. In the application of this method several issues arise. First the derivation of the pertinent shell theory or alternatively the degenerated 3-D solid approach should be chosen. According to the previous election the suitable FE model has to be adopted i.e. the displacement,stress or mixed formulated element. The good behavior of the shell structures under dead loads that are carried out towards the supports by mainly compressive stresses is impaired by the high imperfection sensitivity usually exhibited by these structures. This last effect is important particularly if large deformation and material nonlinearities of the shell may interact unfavorably, as can be the case for thin reinforced shells. In this respect the study of the stability of the shell represents a compulsory step in the analysis. Therefore there are currently very active fields of research such as the different descriptions of consistent nonlinear shell models given by Simo, Fox and Rifai, Mantzenmiller and Buchter and Ramm among others, the consistent formulation of efficient tangent stiffness as the one presented by Ortiz and Schweizerhof and Wringgers, with application to concrete shells exhibiting creep behavior given by Scordelis and coworkers; and finally the development of numerical techniques needed to trace the nonlinear response of the structure. The objective of this paper is concentrated in the last research aspect i.e. in the presentation of a state-of-the-art on the existing solution techniques for nonlinear analysis of structures. In this presentation the following excellent reviews on this subject will be mainly used.
Resumo:
Numerical simulations of flow surrounding a synthetic jet actuating device are presented. By modifying a dynamic mesh technique available in OpenFoam-a well-documented open-source solver for fluid dynamics, detailed computations of the sinusoidal motion of the synthetic jet diaphragm were possible. Numerical solutions were obtained by solving the two dimensional incompressible viscous N-S equations, with the use of a second order implicit time marching scheme and a central finite volume method for spatial discretization in both streamwise and crossflow directions. A systematic parametric study is reported here, in which the external Reynolds number, the diaphragm amplitude and frequency, and the slot dimensions are varied.
Resumo:
En esta tesis se investiga la interacción entre un fluido viscoso y un cuerpo sólido en presencia de una superficie libre. El problema se expresa teóricamente poniendo especial atención a los aspectos de conservación de energía y de la interacción del fluido con el cuerpo. El problema se considera 2D y monofásico, y un desarrollo matemático permite una descomposición de los términos disipativos en términos relacionados con la superficie libre y términos relacionados con la enstrofía. El modelo numérico utilizado en la tesis se basa en el método sin malla Smoothed Particle Hydrodynamics (SPH). De manera análoga a lo que se hace a nivel continuo, las propiedades de conservación se estudian en la tesis con el sistema discreto de partículas. Se tratan también las condiciones de contorno de un cuerpo que se mueve en un flujo viscoso, implementadas con el método ghost-fluid. Se ha desarrollado un algoritmo explícito de interacción fluido / cuerpo. Se han documentado algunos casos de modo detallado con el objetivo de comprobar la capacidad del modelo para reproducir correctamente la disipación de energía y el movimiento del cuerpo. En particular se ha investigado la atenuación de una onda estacionaria, comparando la simulación numérica con predicciones teóricas. Se han realizado otras pruebas para monitorizar la disipación de energía para flujos más violentos que implican la fragmentación de la superficie libre. La cantidad de energía disipada con los diferentes términos se ha evaluado en los casos estudiados con el modelo numérico. Se han realizado otras pruebas numéricas para verificar la técnica de modelización de la interacción fluido / cuerpo, concretamente las fuerzas ejercidas por las olas en cuerpos con formas simples, y el equilibrio de un cuerpo flotante con una forma compleja. Una vez que el modelo numérico ha sido validado, se han realizado simulaciones numéricas para obtener una comprensión más completa de la física implicada en casos (casi) realistas sobre los había aspectos que no se conocían suficientemente. En primer lugar se ha estudiado el el flujo alrededor de un cilindro bajo la superficie libre. El estudio se ha realizado con un número de Reynolds moderado, para un rango de inmersiones del cilindro y números de Froude. La solución numérica permite una investigación de los patrones complejos que se producen. La estela del cilindro interactúa con la superficie libre. Se han identificado algunos inestabilidades características. El segundo estudio se ha realizado sobre el problema de sloshing, tanto experimentalmente como numéricamente. El análisis se restringe a aguas poco profundas y con oscilación horizontal, pero se ha estudiado un gran número de condiciones, lo que lleva a una comprensión bastante completa de los sistemas de onda involucradas. La última parte de la tesis trata también sobre un problema de sloshing pero esta vez el tanque está oscilando con rotación y hay acoplamiento con un sistema mecánico. El sistema se llama pendulum-TLD (Tuned Liquid Damper - con líquido amortiguador). Este tipo de sistema se utiliza normalmente para la amortiguación de las estructuras civiles. El análisis se ha realizado analíticamente, numéricamente y experimentalmente utilizando líquidos con viscosidades diferentes, centrándose en características no lineales y mecanismos de disipación. ABSTRA C T The subject of the present thesis is the interaction between a viscous fluid and a solid body in the presence of a free surface. The problem is expressed first theoretically with a particular focus on the energy conservation and the fluid-body interaction. The problem is considered 2D and monophasic, and some mathematical development allows for a decomposition of the energy dissipation into terms related to the Free Surface and others related to the enstrophy. The numerical model used on the thesis is based on Smoothed Particle Hydrodynamics (SPH): a computational method that works by dividing the fluid into particles. Analogously to what is done at continuum level, the conservation properties are studied on the discrete system of particles. Additionally the boundary conditions for a moving body in a viscous flow are treated and discussed using the ghost-fluid method. An explicit algorithm for handling fluid-body coupling is also developed. Following these theoretical developments on the numerical model, some test cases are devised in order to test the ability of the model to correctly reproduce the energy dissipation and the motion of the body. The attenuation of a standing wave is used to compare what is numerically simulated to what is theoretically predicted. Further tests are done in order to monitor the energy dissipation in case of more violent flows involving the fragmentation of the free-surface. The amount of energy dissipated with the different terms is assessed with the numerical model. Other numerical tests are performed in order to test the fluid/body interaction method: forces exerted by waves on simple shapes, and equilibrium of a floating body with a complex shape. Once the numerical model has been validated, numerical tests are performed in order to get a more complete understanding of the physics involved in (almost) realistic cases. First a study is performed on the flow passing a cylinder under the free surface. The study is performed at moderate Reynolds numbers, for various cylinder submergences, and various Froude numbers. The capacity of the numerical solver allows for an investigation of the complex patterns which occur. The wake from the cylinder interacts with the free surface, and some characteristical flow mechanisms are identified. The second study is done on the sloshing problem, both experimentally and numerically. The analysis is restrained to shallow water and horizontal excitation, but a large number of conditions are studied, leading to quite a complete understanding of the wave systems involved. The last part of the thesis still involves a sloshing problem but this time the tank is rolling and there is coupling with a mechanical system. The system is named pendulum-TLD (Tuned Liquid Damper). This kind of system is normally used for damping of civil structures. The analysis is then performed analytically, numerically and experimentally for using liquids with different viscosities, focusing on non-linear features and dissipation mechanisms.