67 resultados para Detección precoz


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este proyecto se realiza el diseño y la implementación de un sistema que genera realidad aumentada, mediante la detección de vehículos que se encuentran en una trayectoria, y sirve de base para la conducción autónoma en vehículospara ambientes nocturnos ya que se ha observado mediante el estudio del arte que no existen aplicaciones de este tipo en dichas condiciones. La implementación de dicho sistema se realiza mediante una aplicación móvil en el sistema operativo de Android, que se apoya en sus librerías para el uso de sensores y la creación de menús, y las de OpenCV para el tratamiento de las imágenes. Además, se han realizado una serie de pruebas para demostrar la validez y la eficiencia de dicho algoritmo y se presenta al usuario mediante una aplicación de fácil manejo y uso en un dispositivo móvil. ABSTRACT. This project is about the design and implemantation of a system which generates augmented reality by detecting vehicles that stand along a followed trayectory, working out the basis for autonomus driving in night environments, because it was noticed that any other applications exist for this particular purpose, under the given circumstances. Implementation works through an Android mobile application, and learns over this operative system libraries in order to work with sensors, menu configurations, and OpenCV for image processing. A number of tests were run to prove the algorithm right and efficient; and it is introduced to the users via an easy-to-use app on a mobile device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los últimos años han surgido nuevos campos de las tecnologías de la información que exploran el tratamiento de la gran cantidad de datos digitales existentes y cómo transformarlos en conocimiento explícito. Las técnicas de Procesamiento del Lenguaje Natural (NLP) son capaces de extraer información de los textos digitales presentados en forma narrativa. Además, las técnicas de machine learning clasifican instancias o ejemplos en función de sus atributos, en distintas categorías, aprendiendo de otros previamente clasificados. Los textos clínicos son una gran fuente de información no estructurada; en consecuencia, información no explotada en su totalidad. Algunos términos usados en textos clínicos se encuentran en una situación de afirmación, negación, hipótesis o histórica. La detección de esta situación es necesaria para la estructuración de información, pero a su vez tiene una gran complejidad. Extrayendo características lingüísticas de los elementos, o tokens, de los textos mediante NLP; transformando estos tokens en instancias y las características en atributos, podemos mediante técnicas de machine learning clasificarlos con el objetivo de detectar si se encuentran afirmados, negados, hipotéticos o históricos. La selección de los atributos que cada token debe tener para su clasificación, así como la selección del algoritmo de machine learning utilizado son elementos cruciales para la clasificación. Son, de hecho, los elementos que componen el modelo de clasificación. Consecuentemente, este trabajo aborda el proceso de extracción de características, selección de atributos y selección del algoritmo de machine learning para la detección de la negación en textos clínicos en español. Se expone un modelo para la clasificación que, mediante el algoritmo J48 y 35 atributos obtenidos de características lingüísticas (morfológicas y sintácticas) y disparadores de negación, detecta si un token está negado en 465 frases provenientes de textos clínicos con un F-Score del 73%, una exhaustividad del 66% y una precisión del 81% con una validación cruzada de 10 iteraciones. ---ABSTRACT--- New information technologies have emerged in the recent years which explore the processing of the huge amount of existing digital data and its transformation into knowledge. Natural Language Processing (NLP) techniques are able to extract certain features from digital texts. Additionally, through machine learning techniques it is feasible to classify instances according to different categories, learning from others previously classified. Clinical texts contain great amount of unstructured data, therefore information not fully exploited. Some terms (tokens) in clinical texts appear in different situations such as affirmed, negated, hypothetic or historic. Detecting this situation is necessary for the structuring of this data, however not simple. It is possible to detect whether if a token is negated, affirmed, hypothetic or historic by extracting its linguistic features by NLP; transforming these tokens into instances, the features into attributes, and classifying these instances through machine learning techniques. Selecting the attributes each instance must have, and choosing the machine learning algorithm are crucial issues for the classification. In fact, these elements set the classification model. Consequently, this work approaches the features retrieval as well as the attributes and algorithm selection process used by machine learning techniques for the detection of negation in clinical texts in Spanish. We present a classification model which, through J48 algorithm and 35 attributes from linguistic features (morphologic and syntactic) and negation triggers, detects whether if a token is negated in 465 sentences from historical records, with a result of 73% FScore, 66% recall and 81% precision using a 10-fold cross-validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto de fin de carrera surge como una necesidad de realizar un control de calidad en un Sistema de Información Geográfico (SIG en adelante). En el caso de GISProp, su objetivo es el de localizar en un conjunto de objetos cartográficos si existe superficie duplicada con algún otro objeto cartográfico del mismo tipo. Para ello, se utilizan técnicas de agrupamiento espacial, sistemas expertos y una aplicación GIS para obtener el área de los objetos cartográficos. Además, los datos geo-espaciales pueden variar en el tiempo, por lo tanto, se debe tener en cuenta los elementos que varían y comparar única y exclusivamente los objetos cartográficos que correspondan con aquellos que se encuentren en su área de influencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uno de los principales objetivos de los sistemas informáticos es ser capaces de detectar y controlar aquellos accesos no autorizados, o incluso prevenirlos antes de que se produzca una pérdida de valor en el sistema. Se busca encontrar un modelo general que englobe todos los posibles casos de entradas no deseadas al sistema y que sea capaz de aprender para detectar intrusiones futuras. En primer lugar se estudiará la relevancia de las técnicas utilizadas para el almacenamiento de la información. Big Data ilustra los elementos esenciales necesarios para el almacenamiento de los datos con un formato único identificable y unos atributos característicos que los definan, para su posterior análisis. El método de almacenamiento elegido influirá en las técnicas de análisis y captura de valor utilizadas, dado que existe una dependencia directa entre el formato en el que se almacena la información y el valor específico que se pretende obtener de ella. En segundo lugar se examinarán las distintas técnicas de análisis y captura de datos actuales, y los diferentes resultados que se pueden obtener. En este punto aparece el concepto de machine learning y su posible aplicación para detección de anomalías. La finalidad es lograr generalizar diferentes comportamientos a partir de una información no estructurada y generar un modelo aplicable a nuevas entradas al sistema que no son conocidas con anterioridad. En último lugar, se analizarán diferentes entornos de ciberseguridad y se propondrá un conjunto de recomendaciones de diseño o ajustes respecto a las técnicas mencionadas anteriormente, realizando una breve clasificación según las variables de entrada que se tienen y el resultado que se desea obtener. El propósito de este Trabajo de Fin de Grado es, por tanto, la comparación general de las diferentes técnicas actuales de detección de comportamientos anómalos en un sistema informático, tales como el aprendizaje de máquinas o minería de datos, así como de un planteamiento de cuáles son las mejores opciones según el tipo de valor que se desea extraer de la información almacenada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto fue crear una herramienta de evaluación para gimnastas de rítmica, utilizando una metodología y materiales sencillos que cualquier entrenador pudiera reproducir. La herramienta de evaluación propuesta tiene como objetivo seleccionar gimnastas de los grupos de escuela en la franja de edad de 9 a 10 años, para integrar, en los grupos de competición, a las gimnastas que posean las capacidades físicas más adecuadas. De forma complementaria se propuso un cuestionario de predisposición hacia la competición de gimnasta y padres Se seleccionaron ocho pruebas de condición física y dos cuestionarios para aproximarnos a la predisposición hacia la competición padres. Se aplicó esta herramienta con dos grupos de gimnastas: Grupo escuela (n=13) y Grupo de competición (n=17). Se comprobó que la media resultante de la evaluación de las capacidades física muestra una diferencia estadísticamente significativa (p<0.001) entre los dos grupos. Asimismo los resultados registrados en los cuestionarios de predisposición hacia la competición muestran diferencias significativas (p<0.001). Los resultados parecen indicar la adecuación de la herramienta para el objetivo propuesto de selección de gimnastas para el inicio de un proceso de entrenamiento enfocado hacia la competición.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La escritura es una actividad psicomotora muy importante en el desarrollo infantil. Tanto es así que su correcto aprendizaje condicionará el futuro de una persona, pues estará presente en todo tipo de situaciones cotidianas. La disgrafía es el término utilizado para referirse a los problemas relacionados con la escritura, y se manifiesta cuando la escritura de un determinado sujeto es ilegible o lenta como resultado de un aprendizaje fallido de los procesos motores de la escritura. Estos problemas intentan resolverse durante el desarrollo infantil mediante diferentes pruebas que miden las capacidades visomotoras de los niños basándose en criterios de forma (número y posición correcta de trazos). Sin embargo, a lo largo de los años estos criterios han demostrado no ser totalmente precisos en la detección prematura de posibles casos de disgrafía. Por ello, en este proyecto se ha desarrollado una aplicación que ayuda a ampliar la fiabilidad de los test actuales, utilizando un criterio cinemático. Esta aplicación, desarrollada para una tableta Android, muestra al niño una serie de figuras que él debe copiar en la tableta haciendo uso de un lápiz óptico. Los trazos registrados por la aplicación son analizados para valorar aspectos como la fluidez, continuidad y regularidad, ampliando así la fiabilidad de los test actuales, lo que permite desechar falsos positivos y detectar irregularidades que antes no podían ser detectadas. La aplicación desarrollada ha sido validada con un total de ocho niños de cuatro años y siete meses de media de edad, confirmando que cumple con las expectativas planteadas. ABSTRACT. Writing is a very important psychomotor activity in child development because it will be present in all kinds of everyday situations; therefore its proper learning will determine the future of the individual. Dysgraphia is the term used to refer to the problems related to writing, and it takes place when a particular person’s writing is unreadable or slow-moving as a result of a failed learning of writing motor processes. These problems are usually detected by different tests that measure children’s visual motor abilities based on shape criteria (correct number and position of strikes). However, over the years these criteria haven’t proved to be completely accurate in the early detection of possible cases of dysgraphia. Therefore, in this project is presented an application that extends the reliability of current test, using a kinematic approach. This application, developed for an Android tablet, displays a series of figures that the child must copy to the tablet by using a stylus. Strokes recorded by the application are then analyzed to assess aspects such as fluidity, continuity and regularity, expanding the reliability of the current test, discarding false positives created by the conventional criteria and detecting irregularities that previously could not be detected. The developed application has been validated with a total of eight children about four years and seven months in average age, confirming that the application fulfills the initial expectations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este proyecto se realiza el diseño e implementación de un sistema que detecta anomalías en las entradas de entornos controlados. Para ello, se hace uso de las últimas técnicas en visión por computador y se avisa visual y auditivamente, mediante un sistema hardware que recibe señales del ordenador al que está conectado. Se marca y fotografía, a una o varias personas, que cometen una infracción en las entradas de un establecimiento, vigilado con sistemas de vídeo. Las imágenes se almacenan en las carpetas correspondientes. El sistema diseñado es colaborativo, por lo tanto, las cámaras que intervienen, se comunican entre ellas a través de estructuras de datos con el objetivo de intercambiar información. Además, se utiliza conexión inalámbrica desde un dispositivo móvil para obtener una visión global del entorno desde cualquier lugar del mundo. La aplicación se desarrolla en el entorno MATLAB, que permite un tratamiento de la señal de imagen apropiado para el presente proyecto. Asimismo, se proporciona al usuario una interfaz gráfica con la que interactuar de manera sencilla, evitando así, el cambio de parámetros en la estructura interna del programa cuando se quiere variar el entorno o el tipo de adquisición de datos. El lenguaje que se escoge facilita la ejecución en distintos sistemas operativos, incluyendo Windows o iOS y, de esta manera, se proporciona flexibilidad. ABSTRACT. This project studies the design and implementation of a system that detects any anomalies on the entrances to controlled environments. To this end, it is necessary the use of last techniques in computer vision in order to notify visually and aurally, by a hardware system which receives signs from the computer it is connected to. One or more people that commit an infringement while entering into a secured environment, with video systems, are marked and photographed and those images are stored in their belonging file folder. This is a collaborative design system, therefore, every involved camera communicates among themselves through data structures with the purpose of exchanging information. Furthermore, to obtain a global environment vision from any place in the world it uses a mobile wireless connection. The application is developed in MATLAB environment because it allows an appropriate treatment of the image signal for this project. In addition, the user is given a graphical interface to easily interact, avoiding with this, changing any parameters on the program’s intern structure, when it requires modifying the environment or the data type acquisition. The chosen language eases its execution in different operating systems, including Windows or iOS, providing flexibility.