73 resultados para Cumene cracking


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study brings new insights on the hydrogen assisted stress corrosion on damage tolerance of a high-strength duplex stainless steel wire which concerns its potential use as active reinforcement for concrete prestressing. The adopted procedure was to experimentally state the effect of hydrogen on the damage tolerance of cylindrical smooth and precracked wire specimens exposed to stress corrosion cracking using the aggressive medium of the standard test developed by FIP (International Prestressing Federation). Stress corrosion testing, mechanical fracture tests and scanning electron microscopy analysis allowed the damage assessment, and explain the synergy between mechanical loading and environment action on the failure sequence of the wire. In presence of previous damage, hydrogen affects the wire behavior in a qualitative sense, consistently to the fracture anisotropy attributable to cold drawing, but it does not produce quantitative changes since the steel fully preserves its damage tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una técnica de refuerzo de elementos flectados en general y, en particular, de vigas y forjados de hormigón armado, consiste en la disposición de perfiles metálicos por debajo de los elementos a reforzar y retacados a ellos. En muchos casos este refuerzo se diseña con un planteamiento pasivo, es decir, los perfiles no entran en carga hasta que no se incrementan las acciones sobre el elemento reforzado, o lo hacen sólo ligeramente y de forma cuantitativamente no controlada efectuando el retacado mediante cuñas metálicas. En el presente trabajo se estudia la alternativa del refuerzo de vigas de hormigón armado frente a momentos flectores con un planteamiento activo, introduciendo unas fuerzas (por ejemplo, mediante gatos o barras roscadas) entre el perfil y el elemento a reforzar, y retacando posteriormente el perfil a la viga en los puntos de introducción de las fuerzas, mediante cuñas metálicas, mortero, etc. La propuesta que formulamos en el presente trabajo de investigación para el control de las fuerzas introducidas consiste en la medida de las flechas que se producen en el perfil metálico al hacerlo reaccionar contra la viga. Esto permite el empleo de procedimientos sencillos para la predeformación del perfil que no dispongan de dispositivos de medida de la carga introducida, o bien controlar la veracidad de las medidas de las fuerzas que dan tales dispositivos. La gran fiabilidad que tiene el cálculo de flechas en jácenas metálicas hace que con este procedimiento se puedan conocer con gran precisión las fuerzas introducidas. Las medidas de las flechas se pueden llevar a cabo mediante los procedimientos de instrumentación habituales en pruebas de carga, con una precisión más que suficiente para conocer y controlar con fiabilidad el valor de las fuerzas que el perfil ejerce sobre la viga. Los perfiles necesarios para el refuerzo con esta técnica son netamente inferiores a los que se precisarían con el planteamiento pasivo antes indicado. En el trabajo de investigación se recoge un estudio sobre el número, posición y valor de las fuerzas de refuerzo a introducir, en función de la carga para la que se diseña el refuerzo y la capacidad resistente del elemento a reforzar, y se analizan los valores máximos que pueden tener dichas fuerzas, en función de la capacidad de la pieza frente a momentos de signo contrario a los debidos a las cargas gravitatorias. A continuación se analiza la interacción viga-perfil al incrementarse las cargas sobre la viga desde el instante de la ejecución del refuerzo, interacción que hace variar el valor de las fuerzas que el perfil ejerce sobre la viga. Esta variación permite contar con un incremento en las fuerzas de refuerzo si, con las cargas permanentes presentes al reforzar, no podemos introducirlas inicialmente con el valor necesario, o si se producen pérdidas en las propias fuerzas. Este es uno de los criterios a la hora de seleccionar las características del perfil. Por el contrario, dicha variación puede suponer que en algunos puntos a lo largo del vano se supere la capacidad a flexión frente a momentos de signo contrario a los debidos a las cargas gravitatorias, lo que también debe ser tenido en cuenta. Seguidamente se analizan diferentes aspectos que producen una variación en el valor de las fuerzas de refuerzo, como son las deformaciones diferidas del hormigón (fluencia y retracción), los gradientes de temperatura en la pieza, o la actuación de sobrecargas en los vanos adyacentes. Se concluye los efectos de estos fenómenos, que en ocasiones tienen gran influencia, pueden ser cuantificados por el proyectista, recogiéndose propuestas sencillas para su consideración en casos habituales. Posteriormente recogemos una propuesta de metodología de comprobación del refuerzo, en cuanto a cómo considerar la fisuración y evolución del módulo de deformación de la viga, la introducción de la seguridad, la influencia de las tolerancias de laminación en el perfil sobre el valor calculado de las flechas necesarias en el perfil para introducir las fuerzas iniciales proyectadas, o la situación accidental de fuego, entre otros aspectos. Por último, se exponen las conclusiones más relevantes de la investigación realizada, y se proponen futuras líneas de investigación. One technique for strengthening flexural members in general, and reinforced concrete beams and slabs in particular, entails caulking the underside of these members with steel shapes. This sort of strengthening is often designed from a passive approach; i.e., until the load is increased, the shapes are either not loaded or are only slightly loaded to some unquantified extent by caulking with steel shims. The present study explored the possibility of actively strengthening the capacity of reinforced concrete beams to resist bending moments by applying forces (with jacks or threaded bars, for instance) between the shape and the member to be strengthened. The shape is subsequently caulked under the beam at the points where the forces are applied with steel shims, mortar or similar. The proposal put forward in the present study to monitor the forces applied consists in measuring the deflection on the steel shape as it reacts against the beam. With this technique, the shape can be pre-strained using simple procedures that do not call for devices to measure the force applied, or the accurancy of the respective measurements can be verified. As deflection calculations in steel girders are extremely reliable, the forces applied with this procedure can be very precisely determined. Standard instrumental procedures for load testing can be used to measure deflection with more than sufficient precision to reliably determine and monitor the value of the forces exerted on the beam by the shape. Moreover, the shapes required to strengthen members with this technique are substantially smaller than the ones needed in the aforementioned passive approach. This study addressed the number, position and value of the strengthening forces to be applied in terms of the load for which strengthening was designed and the bearing capacity of the member to be strengthened. The maximum value of such forces was also analysed as a function of the capacity of the member to resist counter-gravity moments. An analysis was then conducted of beam-shape interaction when the load on the beam raises since the instant that strengthening is applied, interaction that alters the forces applied to the beam by the shape. This variation can provide an increment in the forces if we cannot introduce them initially with the value calculated as necessary because they were limited by the permanent loads existing when strengthening, or if losses occur in the forces themselves. This is one of the criteria for defining shape specifications. Conversely, such variation may cause the forces to exceed beam counter-gravity bending strength at some points in the span, a development that must also be taken into consideration. Other factors inducing variations in the strengthening force values were then analysed, including deferred concrete strain (creep and shrinkage), temperature gradients in the member and the live loads acting on adjacent spans. The inference drawn was that these developments, which may on occasion have a heavy impact, can be quantified by the design engineer, particularly in ordinary situations, for which simple procedures are proposed. Methodology is likewise proposed for verifying strength in terms of how to appraise beam's cracking and variations in modulus of deformation; safety concerns; the effect of shape lamination tolerance on the calculated deflection necessary for the shape to apply the design forces; and fire-induced situations, among others. Lastly, the most prominent conclusions are discussed and future lines of research are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las piezas pretensadas de hormigón presentan zonas muy solicitadas correspondientes a la zona de transferencia. En muchos casos se ha detectado figuración en tales zonas cuyo origen está ligado a la transferencia de la fuerza de pretensado, pudiendo llegar a causar el rechazo de la pieza. En el caso de las piezas prefabricadas con armaduras pretesas adherentes, no siempre es posible disponer armado transversal para controlar esta fisuración, ya sea por el proceso constructivo, ya sea por disponer en general de secciones transversales muy optimizadas. Recientemente se desarrolló una nueva tipología de piezas de hormigón prefabricado para forjados unidireccionales pretensadas con armadura activa pretesa y sin armadura transversal. La tipología se asimila a una sección en PI invertida, con alas de gran envergadura en comparación con el ancho de nervio, y armadura activa distribuida en las alas. Este diseño parece propenso a la aparición de fisuración en el momento de la transferencia del pretensado. Así, se han producido fallos de carácter frágil: colapso de piezas ya colocadas en obra, separándose la losa inferior de los nervios y cayendo sobre el piso. Las herramientas de análisis usuales han resultado inútiles al aplicarse a la investigación de esta patología. Para afrontar el estudio de los problemas detectados en la tipología, se ha analizado el fenómeno de las tensiones de tracción en la zona de transferencia, usualmente denominadas exfoliación y estallido, así como los métodos de análisis aplicables a elementos pretesos sin armadura transversal. En algunas ocasiones se trata del resultado de trabajos desarrollados para piezas postesadas, o para calcular cuantías de armadura transversal, adaptados a posteriori. También existen métodos desarrollados específicamente para piezas pretesas sin armadura transversal. Junto a los factores considerados en los métodos existentes se han localizado otros, no tenidos en cuenta habitualmente, pero que pueden ser determinantes en piezas no convencionales, como son: la existencia de pretensado superior e inferior, la falta de simetría de la sección transversal, el ancho variable de las piezas, una relación entre el ancho del ala y el espesor de los nervios elevada, la distribución transversal del pretensado en relación al ancho variable. Además, la mayoría de los métodos se han basado en simplificaciones bidimensionales. Para tener en cuenta la influencia de estos factores, se han modelizado piezas en las que varían tanto la geometría de la sección transversal y la cuantía de pretensado, como la ley de adherencia o la distribución de armadura activa en la sección. Estos modelos se han analizado mediante el método de elementos finitos, efectuándose u análisis elástico lineal tridimensional. En general, los métodos existentes no han predicho adecuadamente las tensiones obtenidas mediante elementos finitos. Sobre los resultados obtenidos por elementos finitos se ha desarrollado un ajuste experimental, que presentan un alto grado de correlación y de significación, así como una reducida dispersión y error relativo. En consecuencia, se propone un método de obtención de la tensión máxima de exfoliación, consistente en varias ecuaciones, que tienen en cuenta las peculiaridades de la configuración de las piezas citadas y permiten considerar cualquier ley de adherencia, manteniendo la coherencia con la longitud de transmisión. Las ecuaciones se emplean para la obtención de la tensión máxima de exfoliación en piezas de la tipología estudiada cuya armadura activa se sitúe fuera del núcleo central de la sección transversal. Respecto al estallido, se propone una modificación de los métodos existentes que, comparado con los resultados del análisis por elementos finitos, mejora el valor medio y la dispersión a valores admisibles y del lado de la seguridad. El método considera la geometría de la sección y la distribución del pretensado en la losa inferior. Finalmente, se ofrecen estrategias de diseño para piezas de la tipología o semejantes. End zones of prestressed concrete members are highly stressed. Cracking have often appeared at end zone, and its beginning is related to prestress release. Some members become rejected because of these cracks. Sometimes it is not possible having transverse reinforcement in order to control cracking, when referring to pretensioned precast members. The reason may be the construction process or highly optimized crosssections. A new typology of precast concrete members designed for one-way composite floors was recently developed. The members, without transverse reinforcement, are prestressed with pretensioned wires or strands. This typology is similar to an inverted TT slab, with a large flange related to the web thickness and prestressing reinforcement spread across the flange. This design is highly susceptible to appear cracking at prestress release. Therefore, brittle failures have been reported: fail of slabs laid in place on a construction site, resulting in the separation of the flange from the webs,, and the subsequent fall on the lower floor. Usual analytical methods have been useless to study the failure. End zone tensile stresses have been analysed to study the detected typology problems. These tensile stresses are usually called spalling and bursting (also called splitting in the U.S.). Analysis methods applicable to pretensioned members without transverse reinforcement have been analysed too. Some methods were originally developed for postensioned concrete or for obtaining the amount of transverse reinforcement. In addition, there are methods developed specifically for pretensioned members without transverse reinforcement. Some factors, frequently ignored, have been found, such as lower and upper prestress, lack of symmetry in the cross section, variable width, a high ratio between flange width and web thickness or prestressing reinforcement location related to variable width. They can play a decisive role in non-conventional members. In addition, most methods are based on 2D simplifications. Finite Element modelling has been conducted in order to consider the influence of these factors. A linear 3D approach has been used. The modelled members vary according to cross section geometry, bond behaviour, or prestressing reinforcement location. In general, the obtained tensile stresses don’t agree with existing methods. An experimental adjustment has been conducted on the obtained results, with a high correlation ratio and significance level as well as a low dispersion and relative error. Therefore, a method to obtain the maximum spalling stress is proposed. The proposal consists on some equations that consider the special features of the typology and bond behaviour. Consistency between transmission length and bond behaviour is considered too. The equations are used to calculate maximum spalling stress for the studied typology members whose prestressing reinforcement is located out of the core of the cross section. In relation to bursting, a modification of existing methods is proposed. Compared to finite element results, the proposal improves mean value and dispersion, whose ranges are considered acceptable and secure. The method takes into account cross section geometry and location of prestressing reinforcement across the lower flange. Finally, strategies to design members of this typology or similar are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents analysis and discussion of the b- and ib-values calculated from the acoustic emission (AE) signals recorded during dynamic shake-table tests conducted on a reinforced concrete (RC) frame subjected to several uniaxial seismic simulations of increasing intensity until collapse. The intensity of shaking was controlled by the peak acceleration applied to the shake-table in each seismic simulation, and it ranged from 0.08 to 0.47 times the acceleration of gravity. The numerous spurious signals not related to concrete damage that inevitably contaminate AE measurements obtained from complex dynamic shake-table tests were properly filtered with an RMS filter and the use of guard sensors. Comparing the b- and ib-values calculated through the tests with the actual level of macro-cracking and damage observed during testing, it was concluded that the limit value of 0.05 proposed in previous research to determine the onset of macro-cracks should be revised in the case of earthquake-type dynamic loading. Finally, the b- and ibvalues were compared with the damage endured by the RC frame evaluated both visually and quantitatively in terms of the inter-story drift index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view)are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente Tesis proporciona una gran cantidad de información con respecto al uso de un nuevo y avanzado material polimérico (con base de poliolefina) especialmente adecuada para ser usada en forma de fibras como adición en el hormigón. Se han empleado fibras de aproximadamente 1 mm de diámetro, longitudes entre 48 y 60 mm y una superficie corrugada. Las prometedoras propiedades de este material (baja densidad, bajo coste, buen comportamiento resistente y gran estabilidad química) justifican el interés en desarrollar el esfuerzo de investigación requerido para demostrar las ventajas de su uso en aplicaciones prácticas. La mayor parte de la investigación se ha realizado usando hormigón autocompactante como matriz, ya que este material es óptimo para el relleno de los encofrados del hormigón, aunque también se ha empleado hormigón normal vibrado con el fin de comparar algunas propiedades. Además, el importante desarrollo del hormigón reforzado con fibras en los últimos años, tanto en investigación como en aplicaciones prácticas, también es muestra del gran interés que los resultados y consideraciones de diseño que esta Tesis pueden tener. El material compuesto resultante, Hormigón Reforzado con Fibras de Poliolefina (HRFP o PFRC por sus siglas inglesas) ha sido exhaustivamente ensayado y estudiado en muchos aspectos. Los resultados permiten establecer cómo conseguidos los objetivos buscados: -Se han cuantificado las propiedades mecánicas del PFRC con el fin de demostrar su buen comportamiento en la fase fisurada de elementos estructurales sometidos a tensiones de tracción. -Contrastar los resultados obtenidos con las bases propuestas en la normativa existente y evaluar las posibilidades para el uso del PFRC con fin estructural para sustituir el armado tradicional con barras de acero corrugado para determinadas aplicaciones. -Se han desarrollado herramientas de cálculo con el fin de evaluar la capacidad del PFRC para sustituir al hormigón armado con las barras habituales de acero. -En base a la gran cantidad de ensayos experimentales y a alguna aplicación real en la construcción, se han podido establecer recomendaciones y consejos de diseño para que elementos de este material puedan ser proyectados y construidos con total fiabilidad. Se presentan, además, resultados prometedores en una nueva línea de trabajo en el campo del hormigón reforzado con fibras combinando dos tipologías de fibras. Se combinaron fibras de poliolefina con fibras de acero como refuerzo del mismo hormigón autocompactante detectándose sinergias que podrían ser la base del uso futuro de esta tecnología de hormigón. This thesis provides a significant amount of information on the use of a new advanced polymer (polyolefin-based) especially suitable in the form of fibres to be added to concrete. At the time of writing, there is a noteworthy lack of research and knowledge about use as a randomly distributed element to reinforce concrete. Fibres with an approximate 1 mm diameter, length of 48-60 mm, an embossed surface and improved mechanical properties are employed. The promising properties of the polyolefin material (low density, inexpensive, and with good strength behaviour and high chemical stability) justify the research effort involved and demonstrate the advantages for practical purposes. While most of the research has used self-compacting concrete, given that this type of matrix material is optimum in filling the concrete formwork, for comparison purposes standard vibration compacted mixes have also been used. In addition, the interest in fibre-reinforced concrete technology, in both research and application, support the significant interest in the results and considerations provided by the thesis. The resulting composite material, polyolefin fibre reinforced concrete (PFRC) has been extensively tested and studied. The results have allowed the following objectives to be met: -Assessment of the mechanical properties of PFRC in order to demonstrate the good performance in the post-cracking strength for structural elements subjected to tensile stresses. -- Assessment of the results in contrast with the existing structural codes, regulations and test methods. The evaluation of the potential of PFRC to meet the requirements and replace traditional steel-bar reinforcement applications. -Development of numerical tools designed to evaluate the capability of PFRC to substitute, either partially or totally, standard steel reinforcing bars either alone or in conjunction with steel fibres. -Provision, based on the large amount of experimental work and real applications, of a series of guidelines and recommendations for the practical and reliable design and use of PFRC. Furthermore, the thesis also reports promising results about an innovative line in the field of fibre-reinforced concrete: the design of a fibre cocktail to reinforce the concrete by using two types of fibres simultaneously. Polyolefin fibres were combined with steel fibres in self-compacting concrete, identifying synergies that could serve as the base in the future use of fibre-reinforced concrete technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las exigencias de calidad, tanto en el ámbito de la rehabilitación como en el de las obras de nueva planta, obligan a evitar la fisuración de la tabiquería. Una de sus principales causas es la deformación excesiva de los forjados. Aunque en la mayoría de los casos no tiene efectos estructurales sino solamente estéticos, es necesario tomar precauciones para evitar la fisuración, pues es una de las patologías más frecuentes y en muchos casos motivo de reclamación de los usuarios. El aumento del consumo de los paneles de placa de yeso laminado y lana de roca para la realización de tabiquerías, justifica la necesidad de ahondar en el conocimiento del comportamiento y del mecanismo de fisuración de este material, pues hasta la fecha no se ha encontrado ningún trabajo especificamente dedicado al estudio del comportamiento en fractura de paneles sandwich de placa de yeso laminado y lana de roca en su plano. A la hora de abordar el estudio del comportamiento en fractura del material objeto de esta tesis, es preciso tener en cuenta que se trata de un material compuesto y, como tal, sus propiedades mecánicas y resistentes dependen en gran medida de las de sus componentes. Por tanto, para poder explicar el comportamiento en fractura del panel sandwich, habrá que estudiar también el de sus componentes. Por otro lado, se considera también muy útil disponer de una herramienta de calculo para la simulación de la fractura de paneles sandwich que sea predictiva. Este modelo hará posible facilitar el diseño de tabiquerías que no se fisure con este material, al poder relacionar las flechas que pueden tomar los forjados con su potencial fisuración. Para contrastar y validar un modelo de este tipo, es necesario disponer de suficientes datos experimentales del comportamiento en fractura del panel sandwich de placa de yeso laminado y lana de roca, que se puedan simular numericamente con el mismo. A partir de lo anteriormente expuesto se plantea, en primer lugar, una campaña experimental con el fin de obtener los parámetros necesarios para caracterizar el comportamiento en fractura de los paneles sandwich y sus componentes: placa de yeso laminado y lana de roca, estudiando también, su comportamiento en fractura en Modo Mixto, y el efecto del tamaño en los parámetros del panel. Por otro lado se propone un modelo de cálculo para la simulación de la fractura en Modo Mixto de paneles sandwich de placa de yeso laminado y lana de roca, comprobando la validez del modelo numérico a partir de los resultados experimentales obtenidos en la campaña de ensayos. Finalmente, se aplica el modelo para estudiar la fisuración de tabiquería realizada con el panel sandwich producida por la deformación de forjados unidireccionales realizados con viguetas de hormigón y bovedilla cerámica, por ser esta tipología la más usual en obras de edificación de viviendas. The quality requirements in terms of rehabilitation and new Works, force to prevent cracking on partitions and one of the main causes is the excessive deformation of the floor. In most of the cases, there are any structural damages, only aesthetic effects, but it is necessary to take precautions to avoid cracking because it is one of the most common diseases and in addition is the main reason of user’s complaints. The increased consumption of plasterboard panels and mineral wool used to build partitions, justifies the need to develop a deeper understanding of the cracking behaviour and mechanism, because by now, any specifically work dedicated to the study of fractures behaviour of sandwich plasterboard panels and rock wool has been found. When approaching the study of the fracture behaviour of the material it must bear in mind that we are referring to a composite material and as such, its mechanical and strength properties depend heavily on its components. Therefore, to explain the fracture behaviour of sandwich panels its components must be studied as well. On the other hand, it is also considered very useful to have a calculation tool to simulate the more likely fractures of the sandwich panel in order to predict it. This model used to perform simulations will enable the design of partitions built with these materials without cracks because it will relate the deflections in decks with its potential cracking. To contrast and validate this type of model, it is necessary and imperative to have enough experimental data of the sandwich plasterboard and rock wool fractures in order to enable its numerical simulation with it. On the basis of the above, the question arises firstly an experimental campaign in order to obtain the necessary parameters to characterize the cracking behaviour of sandwich panels and its components: plasterboard and rock wool, studying also its cracking behaviour in a mixed mode fracture and the effect of size parameters of the panel. Furthermore, a calculation model to simulate fractures in mixed mode of the sandwich panels made of plasterboard and rock wool is proposed in order to check the validity of the numerical model, based on experimental results obtained from the test campaign. Finally, this model is applied to study cracking on partitions built with sandwich panels resulting from the unidirectional floor’s deformations built with prestressed concrete beams and slab pottery pieces being this typology the most common one on residential buildings works.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La utilización de barras corrugadas de acero inoxidable en estructuras de hormigón armado, se está mostrando como una alternativa con gran futuro en estructuras expuestas a ambientes muy agresivos o que requieran vidas en servicio muy elevadas. Estos aceros inoxidables cuentan con similares propiedades mecánicas que los aceros al carbono pero un comportamiento muy mejorado frente a la corrosión, especialmente frente a cloruros. Dentro de los aceros inoxidables, los del tipo dúplex tienen como ventaja una composición con una cantidad menor de níquel, reduciendo de esta manera el coste de estos y haciendo que su precio dependa menos de las fluctuaciones del precio del níquel. Este trabajo estudia la resistencia frente a la corrosión bajo tensión de estos aceros inoxidables del tipo dúplex (AISI 2001 y AISI 2205). The use of stainless steel reinforcing bars in concrete structures is proving to be an alternative with great future in structures exposed to aggressive environments or that are required to perform very long service lives. These steels have similar mechanical properties as carbon steels but very improved corrosion resistance, particularly against chlorides. Within stainless steels, duplex type ones have as an advantage their lower content of nickel in their composition, reducing this way their price and making it less related to nickel price fluctuations. This project will study stress corrosion cracking behavior for some of these duplex stainless steels (AISI 2001 and AISI 2205)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El deterioro del hormigón por ciclos de hielo-deshielo en presencia de sales fundentes es causa frecuente de problemas en los puentes e infraestructuras existentes en los países europeos. Los daños producidos por los ciclos de hielo-deshielo en el hormigón pueden ser internos, fundamentalmente la fisuración y/o externos como el descascarillamiento (desgaste superficial). La España peninsular presenta unas características geográficas y climáticas particulares. El 18% de la superficie tiene una altura superior a 1000mts y, además, la altura media geográfica con respecto al nivel del mar es de 660mts (siendo el segundo país más montañoso de toda Europa).Esto hace que la Red de Carreteras del Estado se vea afectada, durante determinados periodos, por fenómenos meteorológicos adversos, en particular por nevadas y heladas, que pueden comprometer las condiciones de vialidad para la circulación de vehículos. Por este motivo la Dirección General de Carreteras realiza trabajos anualmente (campañas de vialidad invernal, de 6 meses de duración) para el mantenimiento de la vialidad de las carreteras cuando éstas se ven afectadas por estos fenómenos. Existen protocolos y planes operativos que permiten sistematizar estos trabajos de mantenimiento que, además, se han intensificado en los últimos 10 años, y que se fundamentan en el empleo de sales fundentes, principalmente NaCl, con la misión de que no haya placas de hielo, ni nieve, en las carreteras. En zonas de fuerte oscilación térmica, que con frecuencia en España se localizan en la zona central del Pirineo, parte de la cornisa Cantábrica y Sistema Central, se producen importantes deterioros en las estructuras y paramentos de hormigón producidos por los ciclos de hielo- deshielo. Pero además el uso de fundentes de vialidad invernal acelera en gran medida la evolución de estos daños. Los tableros de hormigón de puentes de carretera de unos 40-50 años de antigüedad carecen, en general, de un sistema de impermeabilización, y están formados frecuentemente por un firme de mezcla asfáltica, una emulsión adherente y el hormigón de la losa. En la presente tesis se realiza una investigación que pretende reproducir en laboratorio los procesos que tienen lugar en el hormigón de tableros de puentes existentes de carreteras, de unos 40-50 años de antigüedad, que están expuestos durante largos periodos a sales fundentes, con objeto de facilitar la vialidad invernal, y a cambios drásticos de temperatura (hielo y deshielo). Por ello se realizaron cuatro campañas de investigación, teniendo en cuenta que, si bien nos basamos en la norma europea UNE-CEN/TS 12390-9 “Ensayos de hormigón endurecido. Resistencia al hielo-deshielo. Pérdida de masa”, se fabricaron probetas no estandarizadas para este ensayo, pensado en realidad para determinar la afección de los ciclos únicamente a la pérdida de masa. Las dimensiones de las probetas en nuestro caso fueron 150x300 mm, 75 x 150mm (cilíndricas normalizadas para roturas a compresión según la norma UNE-EN 12390-3) y 286x76x76 (prismáticas normalizadas para estudiar cambio de volumen según la norma ASTM C157), lo cual nos permitió realizar sobre las mismas probetas más ensayos, según se presentan en la tesis y, sobre todo, poder comparar los resultados con probetas extraídas de dimensiones similares en puentes existentes. En la primera campaña, por aplicación de la citada norma, se realizaron ciclos de H/D, con y sin contacto con sales de deshielo (NaCl en disolución del 3% según establece dicha norma). El hormigón fabricado en laboratorio, tratando de simular el de losas de tableros de puentes antiguos, presentó una fc de 22,6 MPa y relación agua/cemento de 0,65. Las probetas de hormigón fabricadas se sometieron a ciclos agresivos de hielo/deshielo (H/D), empleando una temperatura máxima de +20ºC y una temperatura mínima de -20ºC al objeto de poder determinar la sensibilidad de este ensayo tanto al tipo de hormigón elaborado como al tipo de probeta fabricado (cilíndrica y prismática). Esta campaña tuvo una segunda fase para profundizar más en el comportamiento de las probetas sometidas a ciclos H/D en presencia de sales. En la segunda campaña, realizada sobre probetas de hormigón fabricadas en laboratorio iguales a las anteriores, la temperaturas mínima del ensayo se subió a -14ºC, lo que nos permitió analizar el proceso de deterioro con más detalle. (Realizando una serie de ensayos de caracterización no destructivos y otros destructivos, y validando su aplicación a la detección de los deterioros causados tras los ensayos acelerados de hielodeshielo. También mediante aplicación de técnicas de microscopía electrónica.) La tercera campaña, se realizó sobre probetas de hormigón de laboratorio similares a las anteriores, fc de 29,3Mpa y relación a/c de 0,65, en las que se aplicó en una cara un revestimiento asfáltico de 2-4cms, según fueran prismáticas y cilíndricas respectivamente, compuesto por una mezcla asfáltica real (AC16), sobre una imprimación bituminosa. (Para simular el nivel de impermeabilización que produce un firme sobre el tablero de un puente) La cuarta campaña, se desarrolló tras una cuidadosa selección de dos puentes de hormigón de 40-50 años de antigüedad, expuestos y sensibles a deterioros de hielodeshielo, y en carreteras con aportación de fundentes. Una vez esto se extrajeron testigos de hormigón de zonas sanas (nervios del tablero), para realizar en laboratorio los mismos ensayos acelerados de hielo-deshielo y de caracterización, de la segunda campaña, basados en la misma norma. De los resultados obtenidos se concluye que cuando se emplean sales fundentes se acelera de forma significativa el deterioro, aumentando tanto el contenido de agua en los poros como el gradiente generado (mecanismo de deterioro físico). Las sales de deshielo aceleran claramente la aparición del daño, que se incrementa incluso en un factor de 5 según se constata en esta investigación para los hormigones ensayados. Pero además se produce un gradiente de cloruros que se ha detectado tanto en los hormigones diseñados en laboratorio como en los extraídos de puentes existentes. En casi todos los casos han aparecido cambios en la microestructura de la pasta de cemento (mecanismo de deterioro químico), confirmándose la formación de un compuesto en el gel CSH de la pasta de cemento, del tipo Ca2SiO3Cl2, que posiblemente está contribuyendo a la alteración de la pasta y a la aceleración de los daños en presencia de sales fundentes. Existe un periodo entre la aparición de fisuración y la pérdida de masa. Las fisuras progresan rápidamente desde la interfase de los áridos más pequeños y angulosos, facilitando así el deterioro del hormigón. Se puede deducir así que el tipo de árido afecta al deterioro. En el caso de los testigos con recubrimiento asfáltico, parece haberse demostrado que la precipitación de sales genera tensiones en las zonas de hormigón cercanas al recubrimiento, que terminan por fisurar el material. Y se constata que el mecanimo de deterioro químico, probablemente tenga más repercusión que el físico, por cuanto el recubrimiento asfáltico es capaz de retener suficiente agua, como para que el gradiente de contenido de agua en el hormigón sea mucho menor que sin el recubrimiento. Se constató, sin embargo, la importancia del gradiente de cloruros en el hormigon. Por lo que se deduce que si bien el recubrimiento asfáltico es ciertamente protector frente a los ciclos H/D, su protección disminuye en presencia de sales; es decir, los cloruros acabarán afectando al hormigón del tablero del puente. Finalmente, entre los hormigones recientes y los antiguos extraídos de puentes reales, se observa que existen diferencias significativas en cuanto a la resistencia a los ciclos H/D entre ellos. Los hormigones más recientes resultan, a igualdad de propiedades, más resistentes tanto a ciclos de H/D en agua como en sales. Posiblemente el hecho de que los hormigones de los puentes hayan estado expuestos a condiciones de temperaturas extremas durante largos periodos de tiempo les ha sensibilizado. La tesis realizada, junto con nuevos contrastes que se realicen en el futuro, nos permitirá implementar una metodología basada en la extracción de testigos de tableros de puente reales para someterlos a ensayos de hielo-deshielo, basados en la norma europea UNECEN/ TS 12390-9 aunque con probetas no normalizadas para el mismo, y, a su vez, realizar sobre estas probetas otros ensayos de caracterización destructivos, que posibilitarán evaluar los daños ocasionados por este fenómeno y su evolución temporal, para actuar consecuentemente priorizando intervenciones de impermeabilización y reparación en el parque de puentes de la RCE. Incluso será posible la elaboración de mapas de riesgo, en función de las zonas de climatología más desfavorable y de los tratamientos de vialidad invernal que se lleven a cabo. Concrete damage by freeze-thaw cycles in the presence of melting salts frequently causes problems on bridges and infrastructures in European countries. Damage caused by freeze-thaw cycles in the concrete can be internal, essentially cracking and / or external as flaking (surface weathering due to environmental action). The peninsular Spain presents specific climatic and geographical characteristics. 18% of the surface has a height greater than 1,000 m and the geographical average height from the sea level is 660 m (being the second most mountainous country in Europe). This makes the National Road Network affected during certain periods due to adverse weather, particularly snow and ice, which can compromise road conditions for vehicular traffic. For this reason the National Road Authority performs works annually (Winter Road Campaign, along 6 months) to maintain the viability of the roads when they are affected by these phenomena. There are protocols and operational plans that allow systematize these maintenance jobs, that also have intensified in the last 10 years, and which are based on the use of deicing salts, mainly NaCl, with the mission that no ice sheets, or snow appear on the roads. In areas of strong thermal cycling, which in Spain are located in the central area of the Pyrenees, part of the Cantabrian coast and Central System, significant deterioration take place in the structures and wall surfaces of concrete due to freeze-thaw. But also the use of deicing salts for winter maintenance greatly accelerated the development of such damages. The concrete decks for road bridges about 40-50 years old, lack generally a waterproofing system, and are often formed by a pavement of asphalt, an adhesive emulsion and concrete slab. In this thesis the research going on aims to reproduce in the laboratory the processes taking place in the concrete of an existing deck at road bridges, about 40-50 years old, they are exposed for long periods to icing salt, to be performed in order to facilitate winter maintenance, and drastic temperature changes (freezing and thawing). Therefore four campaigns of research were conducted, considering that while we rely on the European standard UNE-CEN/TS 12390-9 "Testing hardened concrete. Freezethaw resistance. Mass loss", nonstandard specimens were fabricated for this test, actually conceived to determine the affection of the cycles only to the mass loss. Dimensions of the samples were in our case 150x300 mm, 75 x 150mm (standard cylindrical specimens for compression fractures UNE-EN 12390-3) and 286x76x76 (standard prismatic specimens to study volume change ASTM C157), which allowed us to carry on same samples more trials, as presented in the thesis, and especially to compare the results with similar sized samples taken from real bridges. In the first campaign, by application of that European standard, freeze-thaw cycles, with and without contact with deicing salt (NaCl 3% solution in compliance with such standard) were performed. Concrete made in the laboratory, trying to simulate the old bridges, provided a compressive strength of 22.6 MPa and water/cement ratio of 0.65. In this activity, the concrete specimens produced were subjected to aggressive freeze/thaw using a maximum temperature of +20ºC and a minimum temperature of - 20°C in order to be able to determine the sensitivity of this test to the concrete and specimens fabricated. This campaign had a second phase to go deeper into the behavior of the specimens subjected to cycled freeze/thaw in the presence of salts. In the second campaign, conducted on similar concrete specimens manufactured in laboratory, temperatures of +20ºC and -14ºC were used in the tests, which allowed us to analyze the deterioration process in more detail (performing a series of non-destructive testing and other destructive characterization, validating its application to the detection of the damage caused after the accelerated freeze-thaw tests, and also by applying electron microscopy techniques). The third campaign was conducted on concrete specimens similar to the above manufactured in laboratory, both cylindrical and prismatic, which was applied on one side a 4 cm asphalt coating, consisting of a real asphalt mixture, on a bituminous primer (for simulate the level of waterproofing that produces a pavement on the bridge deck). The fourth campaign was developed after careful selection of two concrete bridges 40- 50 years old, exposed and sensitive to freeze-thaw damage, in roads with input of melting salts. Concrete cores were extracted from healthy areas, for the same accelerated laboratory freeze-thaw testing and characterization made for the second campaign, based on the same standard. From the results obtained it is concluded that when melting salts are employed deterioration accelerates significantly, thus increasing the water content in the pores, as the gradient. Besides, chloride gradient was detected both in the concrete designed in the laboratory and in the extracted in existing bridges. In all cases there have been changes in the microstructure of the cement paste, confirming the formation of a compound gel CSH of the cement paste, Ca2SiO3Cl2 type, which is possibly contributing to impair the cement paste and accelerating the damage in the presence of melting salts. The detailed study has demonstrated that the formation of new compounds can cause porosity at certain times of the cycles may decrease, paradoxically, as the new compound fills the pores, although this phenomenon does not stop the deterioration mechanism and impairments increase with the number of cycles. There is a period between the occurrence of cracking and mass loss. Cracks progress rapidly from the interface of the smallest and angular aggregate, thus facilitating the deterioration of concrete. It can be deduced so the aggregate type affects the deterioration. The presence of melting salts in the system clearly accelerates the onset of damage, which increases even by a factor of 5 as can be seen in this investigation for concrete tested. In the case of specimens with asphalt coating, it seems to have demonstrated that the precipitation of salts generate tensions in the areas close to the concrete coating that end up cracking the material. It follows that while the asphalt coating is certainly a protection against the freeze/thaw cycles, this protection decreases in the presence of salts; so the chlorides will finally affect the concrete bridge deck. Finally, among the recent concrete specimens and the old ones extracted from real bridges, it is observed that the mechanical strengths are very similar to each other, as well as the porosity values and the accumulation capacity after pore water saturation. However, there are significant differences in resistance to freeze/thaw cycles between them. More recent concrete are at equal properties more resistant both cycles freeze/thaw in water with or without salts. Possibly the fact that concrete bridges have been exposed to extreme temperatures for long periods of time has sensitized them. The study, along with new contrasts that occur in the future, allow us to implement a methodology based on the extraction of cores from the deck of real bridges for submission to freeze-thaw tests based on the European standard UNE-CEN/TS 12390-9 even with non-standard specimens for it, and in turn, performed on these samples other destructive characterization tests, which will enable to assess the damage caused by this phenomenon and its evolution, to act rightly prioritizing interventions improving the waterproofing and other repairs in the bridge stock of the National Road Network. It will even be possible to develop risk maps, depending on the worst weather areas and winter road treatments to be carried out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La frecuencia con la que se producen explosiones sobre edificios, ya sean accidentales o intencionadas, es reducida, pero sus efectos pueden ser catastróficos. Es deseable poder predecir de forma suficientemente precisa las consecuencias de estas acciones dinámicas sobre edificaciones civiles, entre las cuales las estructuras reticuladas de hormigón armado son una tipología habitual. En esta tesis doctoral se exploran distintas opciones prácticas para el modelado y cálculo numérico por ordenador de estructuras de hormigón armado sometidas a explosiones. Se emplean modelos numéricos de elementos finitos con integración explícita en el tiempo, que demuestran su capacidad efectiva para simular los fenómenos físicos y estructurales de dinámica rápida y altamente no lineales que suceden, pudiendo predecir los daños ocasionados tanto por la propia explosión como por el posible colapso progresivo de la estructura. El trabajo se ha llevado a cabo empleando el código comercial de elementos finitos LS-DYNA (Hallquist, 2006), desarrollando en el mismo distintos tipos de modelos de cálculo que se pueden clasificar en dos tipos principales: 1) modelos basados en elementos finitos de continuo, en los que se discretiza directamente el medio continuo mediante grados de libertad nodales de desplazamientos; 2) modelos basados en elementos finitos estructurales, mediante vigas y láminas, que incluyen hipótesis cinemáticas para elementos lineales o superficiales. Estos modelos se desarrollan y discuten a varios niveles distintos: 1) a nivel del comportamiento de los materiales, 2) a nivel de la respuesta de elementos estructurales tales como columnas, vigas o losas, y 3) a nivel de la respuesta de edificios completos o de partes significativas de los mismos. Se desarrollan modelos de elementos finitos de continuo 3D muy detallados que modelizan el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con un modelo constitutivo del hormigón CSCM (Murray et al., 2007), que tiene un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura. El acero se representa con un modelo constitutivo elastoplástico bilineal con rotura. Se modeliza la geometría precisa del hormigón mediante elementos finitos de continuo 3D y cada una de las barras de armado mediante elementos finitos tipo viga, con su posición exacta dentro de la masa de hormigón. La malla del modelo se construye mediante la superposición de los elementos de continuo de hormigón y los elementos tipo viga de las armaduras segregadas, que son obligadas a seguir la deformación del sólido en cada punto mediante un algoritmo de penalización, simulando así el comportamiento del hormigón armado. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF de continuo. Con estos modelos de EF de continuo se analiza la respuesta estructural de elementos constructivos (columnas, losas y pórticos) frente a acciones explosivas. Asimismo se han comparado con resultados experimentales, de ensayos sobre vigas y losas con distintas cargas de explosivo, verificándose una coincidencia aceptable y permitiendo una calibración de los parámetros de cálculo. Sin embargo estos modelos tan detallados no son recomendables para analizar edificios completos, ya que el elevado número de elementos finitos que serían necesarios eleva su coste computacional hasta hacerlos inviables para los recursos de cálculo actuales. Adicionalmente, se desarrollan modelos de elementos finitos estructurales (vigas y láminas) que, con un coste computacional reducido, son capaces de reproducir el comportamiento global de la estructura con una precisión similar. Se modelizan igualmente el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con el modelo constitutivo del hormigón EC2 (Hallquist et al., 2013), que también presenta un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura, y se usa en elementos finitos tipo lámina. El acero se representa de nuevo con un modelo constitutivo elastoplástico bilineal con rotura, usando elementos finitos tipo viga. Se modeliza una geometría equivalente del hormigón y del armado, y se tiene en cuenta la posición relativa del acero dentro de la masa de hormigón. Las mallas de ambos se unen mediante nodos comunes, produciendo una respuesta conjunta. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF estructurales. Con estos modelos de EF estructurales se simulan los mismos elementos constructivos que con los modelos de EF de continuo, y comparando sus respuestas estructurales frente a explosión se realiza la calibración de los primeros, de forma que se obtiene un comportamiento estructural similar con un coste computacional reducido. Se comprueba que estos mismos modelos, tanto los modelos de EF de continuo como los modelos de EF estructurales, son precisos también para el análisis del fenómeno de colapso progresivo en una estructura, y que se pueden utilizar para el estudio simultáneo de los daños de una explosión y el posterior colapso. Para ello se incluyen formulaciones que permiten considerar las fuerzas debidas al peso propio, sobrecargas y los contactos de unas partes de la estructura sobre otras. Se validan ambos modelos con un ensayo a escala real en el que un módulo con seis columnas y dos plantas colapsa al eliminar una de sus columnas. El coste computacional del modelo de EF de continuo para la simulación de este ensayo es mucho mayor que el del modelo de EF estructurales, lo cual hace inviable su aplicación en edificios completos, mientras que el modelo de EF estructurales presenta una respuesta global suficientemente precisa con un coste asumible. Por último se utilizan los modelos de EF estructurales para analizar explosiones sobre edificios de varias plantas, y se simulan dos escenarios con cargas explosivas para un edificio completo, con un coste computacional moderado. The frequency of explosions on buildings whether they are intended or accidental is small, but they can have catastrophic effects. Being able to predict in a accurate enough manner the consequences of these dynamic actions on civil buildings, among which frame-type reinforced concrete buildings are a frequent typology is desirable. In this doctoral thesis different practical options for the modeling and computer assisted numerical calculation of reinforced concrete structures submitted to explosions are explored. Numerical finite elements models with explicit time-based integration are employed, demonstrating their effective capacity in the simulation of the occurring fast dynamic and highly nonlinear physical and structural phenomena, allowing to predict the damage caused by the explosion itself as well as by the possible progressive collapse of the structure. The work has been carried out with the commercial finite elements code LS-DYNA (Hallquist, 2006), developing several types of calculation model classified in two main types: 1) Models based in continuum finite elements in which the continuous medium is discretized directly by means of nodal displacement degrees of freedom; 2) Models based on structural finite elements, with beams and shells, including kinematic hypothesis for linear and superficial elements. These models are developed and discussed at different levels: 1) material behaviour, 2) response of structural elements such as columns, beams and slabs, and 3) response of complete buildings or significative parts of them. Very detailed 3D continuum finite element models are developed, modeling mass concrete and reinforcement steel in a segregated manner. Concrete is represented with a constitutive concrete model CSCM (Murray et al., 2007), that has an inelastic behaviour, with different tension and compression response, hardening, cracking and compression damage and failure. The steel is represented with an elastic-plastic bilinear model with failure. The actual geometry of the concrete is modeled with 3D continuum finite elements and every and each of the reinforcing bars with beam-type finite elements, with their exact position in the concrete mass. The mesh of the model is generated by the superposition of the concrete continuum elements and the beam-type elements of the segregated reinforcement, which are made to follow the deformation of the solid in each point by means of a penalty algorithm, reproducing the behaviour of reinforced concrete. In this work these models will be called continuum FE models as a simplification. With these continuum FE models the response of construction elements (columns, slabs and frames) under explosive actions are analysed. They have also been compared with experimental results of tests on beams and slabs with various explosive charges, verifying an acceptable coincidence and allowing a calibration of the calculation parameters. These detailed models are however not advised for the analysis of complete buildings, as the high number of finite elements necessary raises its computational cost, making them unreliable for the current calculation resources. In addition to that, structural finite elements (beams and shells) models are developed, which, while having a reduced computational cost, are able to reproduce the global behaviour of the structure with a similar accuracy. Mass concrete and reinforcing steel are also modeled segregated. Concrete is represented with the concrete constitutive model EC2 (Hallquist et al., 2013), which also presents an inelastic behaviour, with a different tension and compression response, hardening, compression and cracking damage and failure, and is used in shell-type finite elements. Steel is represented once again with an elastic-plastic bilineal with failure constitutive model, using beam-type finite elements. An equivalent geometry of the concrete and the steel is modeled, considering the relative position of the steel inside the concrete mass. The meshes of both sets of elements are bound with common nodes, therefore producing a joint response. These models will be called structural FE models as a simplification. With these structural FE models the same construction elements as with the continuum FE models are simulated, and by comparing their response under explosive actions a calibration of the former is carried out, resulting in a similar response with a reduced computational cost. It is verified that both the continuum FE models and the structural FE models are also accurate for the analysis of the phenomenon of progressive collapse of a structure, and that they can be employed for the simultaneous study of an explosion damage and the resulting collapse. Both models are validated with an experimental full-scale test in which a six column, two floors module collapses after the removal of one of its columns. The computational cost of the continuum FE model for the simulation of this test is a lot higher than that of the structural FE model, making it non-viable for its application to full buildings, while the structural FE model presents a global response accurate enough with an admissible cost. Finally, structural FE models are used to analyze explosions on several story buildings, and two scenarios are simulated with explosive charges for a full building, with a moderate computational cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las pilas de los puentes son elementos habitualmente verticales que, generalmente, se encuentran sometidos a un estado de flexión compuesta. Su altura significativa en muchas ocasiones y la gran resistencia de los materiales constituyentes de estos elementos – hormigón y acero – hace que se encuentren pilas de cierta esbeltez en la que los problemas de inestabilidad asociados al cálculo en segundo orden debido a la no linealidad geométrica deben ser considerados. Además, la mayoría de las pilas de nuestros puentes y viaductos están hechas de hormigón armado por lo que se debe considerar la fisuración del hormigón en las zonas en que esté traccionado. Es decir, el estudio del pandeo de pilas esbeltas de puentes requiere también la consideración de un cálculo en segundo orden mecánico, y no solo geométrico. Por otra parte, una pila de un viaducto no es un elemento que pueda considerarse como aislado; al contrario, su conexión con el tablero hace que aparezca una interacción entre la propia pila y aquél que, en cierta medida, supone una cierta coacción al movimiento de la propia cabeza de pila. Esto hace que el estudio de la inestabilidad de una pila esbelta de un puente no puede ser resuelto con la “teoría del pandeo de la pieza aislada”. Se plantea, entonces, la cuestión de intentar definir un procedimiento que permita abordar el problema complicado del pandeo de pilas esbeltas de puentes pero empleando herramientas de cálculo no tan complejas como las que resuelven “el pandeo global de una estructura multibarra, teniendo en cuenta todas las no linealidades, incluidas las de las coacciones”. Es decir, se trata de encontrar un procedimiento, que resulta ser iterativo, que resuelva el problema planteado de forma aproximada, pero suficientemente ajustada al resultado real, pero empleando programas “convencionales” de cálculo que sean capaces de : - por una parte, en la estructura completa: o calcular en régimen elástico lineal una estructura plana o espacial multibarra compleja; - por otra, en un modelo de una sola barra aislada: o considerar las no linealidades geométricas y mecánicas a nivel tensodeformacional, o considerar la no linealidad producida por la fisuración del hormigón, o considerar una coacción “elástica” en el extremo de la pieza. El objeto de este trabajo es precisamente la definición de ese procedimiento iterativo aproximado, la justificación de su validez, mediante su aplicación a diversos casos paramétricos, y la presentación de sus condicionantes y limitaciones. Además, para conseguir estos objetivos se han elaborado unos ábacos de nueva creación que permiten estimar la reducción de rigidez que supone la fisuración del hormigón en secciones huecas monocajón de hormigón armado. También se han creado unos novedosos diagramas de interacción axil-flector válidos para este tipo de secciones en flexión biaxial. Por último, hay que reseñar que otro de los objetivos de este trabajo – que, además, le da título - era cuantificar el valor de la coacción que existe en la cabeza de una pila debido a que el tablero transmite las cargas de una pila al resto de los integrantes de la subestructura y ésta, por tanto, colabora a reducir los movimientos de la cabeza de pila en cuestión. Es decir, la cabeza de una pila no está exenta lo cual mejora su comportamiento frente al pandeo. El régimen de trabajo de esta coacción es claramente no lineal, ya que la rigidez de las pilas depende de su grado de fisuración. Además, también influye cómo las afecta la no linealidad geométrica que, para la misma carga, aumenta la flexión de segundo orden de cada pila. En este documento se define cuánto vale esta coacción, cómo hay que calcularla y se comprueba su ajuste a los resultados obtenidos en el l modelo no lineal completo. The piers of the bridges are vertical elements where axial loads and bending moments are to be considered. They are often high and also the strength of the materials they are made of (concrete and steel) is also high. This means that slender piers are very common and, so, the instabilities produced by the second order effects due to the geometrical non linear effects are to be considered. In addition to this, the piers are usually made of reinforced concrete and, so, the effects of the cracking of the concrete should also be evaluated. That is, the analysis of the instabilities of te piers of a bridge should consider both the mechanical and the geometrical non linearities. Additionally, the pier of a bridge is not a single element, but just the opposite; the connection of the pier to the deck of the bridge means that the movements of the top of the pier are reduced compared to the situation of having a free end at the top of the pier. The connection between the pier and the deck is the reason why the instability of the pier cannot be analysed using “the buckling of a compressed single element method”. So, the question of defining an approximate method for analysing the buckling of the slender piers of a bridge but using a software less complex than what it is needed for analysing the “ global buckling of a multibeam structure considering all t”, is arisen. Then, the goal should be trying to find a procedure for analysing the said complex problem of the buckling of the slender piers of a bridge using a simplified method. This method could be an iterative (step by step) procedure, being accurate enough, using “normal” software having the following capabilities: - Related to the calculation of the global structure o Ability for calculating a multibesam strucutre using elastic analysis. - Related to the calculation of a single beam strcuture:: o Ability for taking into account the geometrical and mechanical () non linearities o Ability for taking into account the cracking of the concrete. o Ability for using partial stiff constraints (elastic springs) at the end of the elements One of the objectives of this document is just defining this simplified methodology, justifying the accuracy of the proposed procedure by using it on some different bridges and presenting the exclusions and limitations of the propose method. In addition to this, some new charts have been created for calculating the reduction of the stiffness of hollow cross sections made of reinforced concrete. Also, new charts for calculating the reinforcing of hollow cross sections under biaxial bending moments are also included in the document. Finally, it is to be said that another aim of the document – as it is stated on the title on the document – is defining the value of the constraint on the top of the pier because of the connection of the pier to the deck .. and to the other piers. That is, the top of the pier is not a free end of a beam and so the buckling resistance of the pier is significantly improved. This constraint is a non-elastic constraint because the stiffness of each pier depends on the level of cracking. Additionally, the geometrical non linearity is to be considered as there is an amplification of the bending moments due to the increasing of the movements of the top of the pier. This document is defining how this constraints is to be calculated; also the accuracy of the calculations is evaluated comparing the final results with the results of the complete non linear calculations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto versa sobre el estudio y diseño de una central termosolar de torre central, así como de su rendimiento y producción. La característica especial de esta planta es que tiene como fin suministrar calor a un proceso químico: cracking térmico del metano para la producción de hidrógeno. Debido a que el cracking térmico tiene lugar en el interior de un tanque de metal líquido (reactor químico) y al peso del mismo, resulta conveniente dejar el reactor a nivel de suelo. Así pues, los rayos solares tienen que descender desde la parte superior de la torre hasta el reactor. Los rayos solares se reflejan en los heliostatos para volver a ser reflejados en la parte superior de la torre, donde hay otro espejo que conduce los rayos solares hasta el reactor. La localización elegida para realizar el estudio ha sido Tabernas, cerca de la Plataforma Solar de Almería (PSA). De la estación SIAR (Sistema de Información Agroclimática para el Regadío del Ministerio de Agricultura, Alimentación y Medio Ambiente del Gobierno de España). de Tabernas precisamente se han obtenido los datos de radiación global, y mediante una correlación kd-kt, se ha obtenido la radiación directa. Para el estudio de la energía aportada por el campo solar, se ha elegido un campo norte de heliostatos, debido a que un campo circular además de tener menor rendimiento en este proyecto no sería factible. Los heliostatos considerados son cuadrados de 11 x 11 m. Estos heliostatos apuntan hacia el punto (0, 0, 100) m en el sistema de coordenadas absoluto considerado para el proyecto, que coincide con una altura a 100 m en el centro interior de la torre. Este punto es uno de los focos del elipsoide virtual, del cual forma parte el reflector (espejo situado en la parte superior) y cuyo otro foco se sitúa en la parte superior del receptor (reactor), cuyo fin es dirigir los rayos hacia el reactor, como se ha indicado. Una vez definido el proyecto, se lleva a cabo un dimensionado del campo solar, con el cual puede obtenerse un campo de heliostatos. Tras realizar la simulación, se obtienen datos instantáneos y medios. A modo de ejemplo, se incluye el rendimiento por bloqueos y sombras a las 9 h de la mañana en enero, donde puede observarse que la sombra de la torre tiene una alta importancia sobre los heliostatos situados en la zona oeste. Del mismo modo, se han obtenido los datos de incidencia de los rayos solares sobre el receptor, de forma que puede caracterizarse la incidencia del flujo térmico sobre el mismo mediante un mallado. A continuación se incluye una imagen del número de rayos solares que inciden sobre el receptor a las 12 h en junio. Las conclusiones que pueden extraerse del proyecto son:  El rendimiento anual de la planta es del 26 %.  La producción anual de hidrógeno sería de 163,7 t.  Para mayores potencias de plantas el rendimiento por sombras y bloqueos sería menor, al igual que el asociado al efecto coseno, a la dispersión y absorción atmosférica y al factor de interceptación.  Para reducir el efecto del tamaño en los dos primeros rendimientos mencionados en el párrafo anterior podría elevarse la altura de la torre.  Para aumentar el factor de interceptación podría estudiarse la colocación de espejos en el interior de la torre, de modo que reflejasen los rayos solares hasta el receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se aborda una cuestión central en el diseño en carga última de estructuras de hormigón armado y de fábrica: la posibilidad efectiva de que las deformaciones plásticas necesarias para verificar un estado de rotura puedan ser alcanzadas por las regiones de la estructura que deban desarrollar su capacidad última para verificar tal estado. Así, se parte de las decisiones de diseño que mediante mera estática aseguran un equilibrio de la estructura para las cargas últimas que deba resistir, pero determinando directamente el valor de las deformaciones necesarias para llegar a tal estado. Por tanto, no se acude a los teoremas de rotura sin más, sino que se formula el problema desde un punto de vista elastoplástico. Es decir, no se obvia el recorrido que la estructura deba realizar en un proceso de carga incremental monótono, de modo que las regiones no plastificadas contribuyen a coaccionar las libres deformaciones plásticas que, en la teoría de rotura, se suponen. En términos de trabajo y energía, se introduce en el balance del trabajo de las fuerzas externas y en el de la energía de deformación, aquella parte del sistema que no ha plastificado. Establecido así el balance energético como potencial del sistema es cuando la condición de estacionariedad del mismo hace determinados los campos de desplazamientos y, por tanto, el de las deformaciones plásticas también. En definitiva, se trata de un modo de verificar si la ductilidad de los diseños previstos es suficiente, y en qué medida, para verificar el estado de rotura previsto, para unas determinadas cargas impuestas. Dentro del desarrollo teórico del problema, se encuentran ciertas precisiones importantes. Entre ellas, la verificación de que el estado de rotura a que se llega de manera determinada mediante el balance energético elasto-plástico satisface las condiciones de la solución de rotura que los teoremas de carga última predicen, asegurando, por tanto, que la solución determinada -unicidad del problema elásticocoincide con el teorema de unicidad de la carga de rotura, acotando además cuál es el sistema de equilibrio y cuál es la deformada de colapso, aspectos que los teoremas de rotura no pueden asegurar, sino sólo el valor de la carga última a verificar. Otra precisión se basa en la particularidad de los casos en que el sistema presenta una superficie de rotura plana, haciendo infinitas las posibilidades de equilibrio para una misma deformada de colapso determinada, lo que está en la base de, aparentemente, poder plastificar a antojo en vigas y arcos. Desde el planteamiento anterior, se encuentra entonces que existe una condición inherente a cualquier sistema, definidas unas leyes constitutivas internas, que permite al mismo llegar al inicio del estado de rotura sin demandar deformación plástica alguna, produciéndose la plastificación simultánea de todas las regiones que hayan llegado a su solicitación de rotura. En cierto modo, se daría un colapso de apariencia frágil. En tal caso, el sistema conserva plenamente hasta el final su capacidad dúctil y tal estado actúa como representante canónico de cualquier otra solución de equilibrio que con idéntico criterio de diseño interno se prevea para tal estructura. En la medida que el diseño se acerque o aleje de la solución canónica, la demanda de ductilidad del sistema para verificar la carga última será menor o mayor. Las soluciones que se aparten en exceso de la solución canónica, no verificarán el estado de rotura previsto por falta de ductilidad: la demanda de deformación plástica de alguna región plastificada estará más allá de la capacidad de la misma, revelándose una carga de rotura por falta de ductilidad menor que la que se preveía por mero equilibrio. Para la determinación de las deformaciones plásticas de las rótulas, se ha tomado un modelo formulado mediante el Método de los Elementos de Contorno, que proporciona un campo continuo de desplazamientos -y, por ende, de deformaciones y de tensiones- incluso en presencia de fisuras en el contorno. Importante cuestión es que se formula la diferencia, nada desdeñable, de la capacidad de rotación plástica de las secciones de hormigón armado en presencia de cortante y en su ausencia. Para las rótulas de fábrica, la diferencia se establece para las condiciones de la excentricidad -asociadas al valor relativo de la compresión-, donde las diferencias entres las regiones plastificadas con esfuerzo normal relativo alto o bajo son reseñables. Por otro lado, si bien de manera un tanto secundaria, las condiciones de servicio también imponen un límite al diseño previo en carga última deseado. La plastificación lleva asociadas deformaciones considerables, sean locales como globales. Tal cosa impone que, en estado de servicio, si la plastificación de alguna región lleva asociadas fisuraciones excesivas para el ambiente del entorno, la solución sea inviable por ello. Asimismo, las deformaciones de las estructuras suponen un límite severo a las posibilidades de su diseño. Especialmente en edificación, las deformaciones activas son un factor crítico a la hora de decidirse por una u otra solución. Por tanto, al límite que se impone por razón de ductilidad, se debe añadir el que se imponga por razón de las condiciones de servicio. Del modo anterior, considerando las condiciones de ductilidad y de servicio en cada caso, se puede tasar cada decisión de diseño con la previsión de cuáles serán las consecuencias en su estado de carga última y de servicio. Es decir, conocidos los límites, podemos acotar cuáles son los diseños a priori que podrán satisfacer seguro las condiciones de ductilidad y de servicio previstas, y en qué medida. Y, en caso de no poderse satisfacer, qué correcciones debieran realizarse sobre el diseño previo para poderlas cumplir. Por último, de las consecuencias que se extraen de lo estudiado, se proponen ciertas líneas de estudio y de experimentación para poder llegar a completar o expandir de manera práctica los resultados obtenidos. ABSTRACT This work deals with a main issue for the ultimate load design in reinforced concrete and masonry structures: the actual possibility that needed yield strains to reach a ultimate state could be reached by yielded regions on the structure that should develop their ultimate capacity to fulfill such a state. Thus, some statically determined design decisions are posed as a start for prescribed ultimate loads to be counteracted, but finding out the determined value of the strains needed to reach the ultimate load state. Therefore, ultimate load theorems are not taken as they are, but a full elasto-plastic formulation point of view is used. As a result, the path the structure must develop in a monotonus increasing loading procedure is not neglected, leading to the fact that non yielded regions will restrict the supposed totally free yield strains under a pure ultimate load theory. In work and energy terms, in the overall account of external forces work and internal strain energy, those domains in the body not reaching their ultimate state are considered. Once thus established the energy balance of the system as its potential, by imposing on it the stationary condition, both displacements and yield strains appear as determined values. Consequently, what proposed is a means for verifying whether the ductility of prescribed designs is enough and the extent to which they are so, for known imposed loads. On the way for the theoretical development of the proposal, some important aspects have been found. Among these, the verification that the conditions for the ultimate state reached under the elastoplastic energy balance fulfills the conditions prescribed for the ultimate load state predicted through the ultimate load theorems, assuring, therefore, that the determinate solution -unicity of the elastic problemcoincides with the unicity ultimate load theorem, determining as well which equilibrium system and which collapse shape are linked to it, being these two last aspects unaffordable by the ultimate load theorems, that make sure only which is the value of the ultimate load leading to collapse. Another aspect is based on the particular case in which the yield surface of the system is flat -i.e. expressed under a linear expression-, turning out infinite the equilibrium possibilities for one determined collapse shape, which is the basis of, apparently, deciding at own free will the yield distribution in beams and arches. From the foresaid approach, is then found that there is an inherent condition in any system, once defined internal constitutive laws, which allows it arrive at the beginning of the ultimate state or collapse without any yield strain demand, reaching the collapse simultaneously for all regions that have come to their ultimate strength. In a certain way, it would appear to be a fragile collapse. In such a case case, the system fully keeps until the end its ductility, and such a state acts as a canonical representative of any other statically determined solution having the same internal design criteria that could be posed for the that same structure. The extent to which a design is closer to or farther from the canonical solution, the ductility demand of the system to verify the ultimate load will be higher or lower. The solutions being far in excess from the canonical solution, will not verify the ultimate state due to lack of ductility: the demand for yield strains of any yielded region will be beyond its capacity, and a shortcoming ultimate load by lack of ductility will appear, lower than the expected by mere equilibrium. For determining the yield strains of plastic hinges, a Boundary Element Method based model has been used, leading to a continuous displacement field -therefore, for strains and stresses as well- even if cracks on the boundary are present. An important aspect is that a remarkable difference is found in the rotation capacity between plastic hinges in reinforced concrete with or without shear. For masonry hinges, such difference appears when dealing with the eccentricity of axial forces -related to their relative value of compression- on the section, where differences between yield regions under high or low relative compressions are remarkable. On the other hand, although in a certain secondary manner, serviceability conditions impose limits to the previous ultimate load stated wanted too. Yield means always big strains and deformations, locally and globally. Such a thing imposes, for serviceability states, that if a yielded region is associated with too large cracking for the environmental conditions, the predicted design will be unsuitable due to this. Furthermore, displacements must be restricted under certain severe limits that restrain the possibilities for a free design. Especially in building structures, active displacements are a critical factor when chosing one or another solution. Then, to the limits due to ductility reasons, other limits dealing with serviceability conditions shoud be added. In the foresaid way, both considering ductility and serviceability conditions in every case, the results for ultimate load and serviceability to which every design decision will lead can be bounded. This means that, once the limits are known, it is possible to bound which a priori designs will fulfill for sure the prescribed ductility and serviceability conditions, and the extent to wich they will be fulfilled, And, in case they were not, which corrections must be performed in the previous design so that it will. Finally, from the consequences derived through what studied, several study and experimental fields are proposed, in order to achieve a completeness and practical expansion of the obtained results.