65 resultados para Cameras
Resumo:
Nowadays, a lot of applications use digital images. For example in face recognition to detect and tag persons in photograph, for security control, and a lot of applications that can be found in smart cities, as speed control in roads or highways and cameras in traffic lights to detect drivers ignoring red light. Also in medicine digital images are used, such as x-ray, scanners, etc. These applications depend on the quality of the image obtained. A good camera is expensive, and the image obtained depends also on external factor as light. To make these applications work properly, image enhancement is as important as, for example, a good face detection algorithm. Image enhancement also can be used in normal photograph, for pictures done in bad light conditions, or just to improve the contrast of an image. There are some applications for smartphones that allow users apply filters or change the bright, colour or contrast on the pictures. This project compares four different techniques to use in image enhancement. After applying one of these techniques to an image, it will use better the whole available dynamic range. Some of the algorithms are designed for grey scale images and others for colour images. It is used Matlab software to develop and present the final results. These algorithms are Successive Means Quantization Transform (SMQT), Histogram Equalization, using Matlab function and own implemented function, and V transform. Finally, as conclusions, we can prove that Histogram equalization algorithm is the simplest of all, it has a wide variability of grey levels and it is not suitable for colour images. V transform algorithm is a good option for colour images. The algorithm is linear and requires low computational power. SMQT algorithm is non-linear, insensitive to gain and bias and it can extract structure of the data. RESUMEN. Hoy en día incontable número de aplicaciones usan imágenes digitales. Por ejemplo, para el control de la seguridad se usa el reconocimiento de rostros para detectar y etiquetar personas en fotografías o vídeos, para distintos usos de las ciudades inteligentes, como control de velocidad en carreteras o autopistas, cámaras en los semáforos para detectar a conductores haciendo caso omiso de un semáforo en rojo, etc. También en la medicina se utilizan imágenes digitales, como por ejemplo, rayos X, escáneres, etc. Todas estas aplicaciones dependen de la calidad de la imagen obtenida. Una buena cámara es cara, y la imagen obtenida depende también de factores externos como la luz. Para hacer que estas aplicaciones funciones correctamente, el tratamiento de imagen es tan importante como, por ejemplo, un buen algoritmo de detección de rostros. La mejora de la imagen también se puede utilizar en la fotografía no profesional o de consumo, para las fotos realizadas en malas condiciones de luz, o simplemente para mejorar el contraste de una imagen. Existen aplicaciones para teléfonos móviles que permiten a los usuarios aplicar filtros y cambiar el brillo, el color o el contraste en las imágenes. Este proyecto compara cuatro técnicas diferentes para utilizar el tratamiento de imagen. Se utiliza la herramienta de software matemático Matlab para desarrollar y presentar los resultados finales. Estos algoritmos son Successive Means Quantization Transform (SMQT), Ecualización del histograma, usando la propia función de Matlab y una nueva función que se desarrolla en este proyecto y, por último, una función de transformada V. Finalmente, como conclusión, podemos comprobar que el algoritmo de Ecualización del histograma es el más simple de todos, tiene una amplia variabilidad de niveles de gris y no es adecuado para imágenes en color. El algoritmo de transformada V es una buena opción para imágenes en color, es lineal y requiere baja potencia de cálculo. El algoritmo SMQT no es lineal, insensible a la ganancia y polarización y, gracias a él, se puede extraer la estructura de los datos.
Resumo:
The proliferation of video games and other applications of computer graphics in everyday life demands a much easier way to create animatable virtual human characters. Traditionally, this has been the job of highly skilled artists and animators that painstakingly model, rig and animate their avatars, and usually have to tune them for each application and transmission/rendering platform. The emergence of virtual/mixed reality environments also calls for practical and costeffective ways to produce custom models of actual people. The purpose of the present dissertation is bringing 3D human scanning closer to the average user. For this, two different techniques are presented, one passive and one active. The first one is a fully automatic system for generating statically multi-textured avatars of real people captured with several standard cameras. Our system uses a state-of-the-art shape from silhouette technique to retrieve the shape of subject. However, to deal with the lack of detail that is common in the facial region for these kind of techniques, which do not handle concavities correctly, our system proposes an approach to improve the quality of this region. This face enhancement technique uses a generic facial model which is transformed according to the specific facial features of the subject. Moreover, this system features a novel technique for generating view-independent texture atlases computed from the original images. This static multi-texturing system yields a seamless texture atlas calculated by combining the color information from several photos. We suppress the color seams due to image misalignments and irregular lighting conditions that multi-texturing approaches typically suffer from, while minimizing the blurring effect introduced by color blending techniques. The second technique features a system to retrieve a fully animatable 3D model of a human using a commercial depth sensor. Differently to other approaches in the current state of the art, our system does not require the user to be completely still through the scanning process, and neither the depth sensor is moved around the subject to cover all its surface. Instead, the depth sensor remains static and the skeleton tracking information is used to compensate the user’s movements during the scanning stage. RESUMEN La popularización de videojuegos y otras aplicaciones de los gráficos por ordenador en el día a día requiere una manera más sencilla de crear modelos virtuales humanos animables. Tradicionalmente, estos modelos han sido creados por artistas profesionales que cuidadosamente los modelan y animan, y que tienen que adaptar específicamente para cada aplicación y plataforma de transmisión o visualización. La aparición de los entornos de realidad virtual/mixta aumenta incluso más la demanda de técnicas prácticas y baratas para producir modelos 3D representando personas reales. El objetivo de esta tesis es acercar el escaneo de humanos en 3D al usuario medio. Para ello, se presentan dos técnicas diferentes, una pasiva y una activa. La primera es un sistema automático para generar avatares multi-texturizados de personas reales mediante una serie de cámaras comunes. Nuestro sistema usa técnicas del estado del arte basadas en shape from silhouette para extraer la forma del sujeto a escanear. Sin embargo, este tipo de técnicas no gestiona las concavidades correctamente, por lo que nuestro sistema propone una manera de incrementar la calidad en una región del modelo que se ve especialmente afectada: la cara. Esta técnica de mejora facial usa un modelo 3D genérico de una cara y lo modifica según los rasgos faciales específicos del sujeto. Además, el sistema incluye una novedosa técnica para generar un atlas de textura a partir de las imágenes capturadas. Este sistema de multi-texturización consigue un atlas de textura sin transiciones abruptas de color gracias a su manera de mezclar la información de color de varias imágenes sobre cada triángulo. Todas las costuras y discontinuidades de color debidas a las condiciones de iluminación irregulares son eliminadas, minimizando el efecto de desenfoque de la interpolación que normalmente introducen este tipo de métodos. La segunda técnica presenta un sistema para conseguir un modelo humano 3D completamente animable utilizando un sensor de profundidad. A diferencia de otros métodos del estado de arte, nuestro sistema no requiere que el usuario esté completamente quieto durante el proceso de escaneado, ni mover el sensor alrededor del sujeto para cubrir toda su superficie. Por el contrario, el sensor se mantiene estático y el esqueleto virtual de la persona, que se va siguiendo durante el proceso, se utiliza para compensar sus movimientos durante el escaneado.
Resumo:
La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.
Resumo:
This paper discusses the target localization problem in wireless visual sensor networks. Additive noises and measurement errors will affect the accuracy of target localization when the visual nodes are equipped with low-resolution cameras. In the goal of improving the accuracy of target localization without prior knowledge of the target, each node extracts multiple feature points from images to represent the target at the sensor node level. A statistical method is presented to match the most correlated feature point pair for merging the position information of different sensor nodes at the base station. Besides, in the case that more than one target exists in the field of interest, a scheme for locating multiple targets is provided. Simulation results show that, our proposed method has desirable performance in improving the accuracy of locating single target or multiple targets. Results also show that the proposed method has a better trade-off between camera node usage and localization accuracy.
Resumo:
Actualmente existen varios dispositivos que aceptan gestos sobre superficies táctiles, sean celulares, tabletas, computadores, etc. a los cuales las personas se acostumbran rápidamente a su uso y los aceptan como herramientas necesarias en su vida. Del mismo modo existen algunas aplicaciones que manejan entornos en 3D, y permiten captar gestos realizados con las manos, cuerpo, cabeza. Estas técnicas se han desarrollado mucho por separado pero se ha podido evidenciar en base a los artículos revisados que no existen muchos estudios que combinen las aplicaciones táctiles con las 3D manejadas por gestos en el aire. El presente trabajo muestra un prototipo que permite la comunicación y coordinación entre dos aplicaciones, una que muestra documentos representados por esferas en una aplicación con interacción táctil desarrollada en Unity que funciona sobre Android, y una segunda aplicación desarrollada también en Unity que maneja un entorno 3D con el que se interactúa mediante gestos realizados en el aire. Luego de algunos intentos la interacción entre ambas aplicaciones fue lograda implementando comunicación por sockets entre la aplicación en el dispositivo Android y la aplicación 3D que se encuentra alojada en un computador con Windows 7. La captura de gestos en el aire se realiza mediante el sistema Tracking Tools desarrollado por la compañía Optitrack que captura los movimientos con cámaras infrarrojas y marcadores en los dedos. Este sistema envía los datos de los gestos a nuestra aplicación 3D. Estos equipos son de propiedad del laboratorio Decoroso Crespo de la Universidad Politécnica de Madrid. Una vez lograda la implementación e interacción entre las aplicaciones se han realizado pruebas de usabilidad con nueve estudiantes del Máster Universitario en Software y Sistemas de la Universidad Politécnica de Madrid. Cada uno ha respondido una serie de encuestas para poder obtener resultados sobre cuán usable es el prototipo, la experiencia del usuario y qué mejoras se podrían realizar sobre éste. En la parte final de este documento se presentan los resultados de las encuestas y se muestran las conclusiones y trabajo futuro.---ABSTRACT---Currently there are several devices that accept gestures on touch surfaces like phones, tablets, computers, etc. to which people quickly become accustomed to their use and accept them as necessary tools in their life. Similarly there are some applications that handle 3D environments and like televisions, holograms and allow capture gestures made with hands, body, and head. These techniques have been developed on a separated way but based on some research we may say that the are not many studies that combine touch with 3D applications handled by gestures in the air. This paper presents a prototype of the interaction of two issues of a 2D showing documents represented by spheres on a touch application developed in Unity that works on Android and allows communicating with the second application also developed in Unity that handles a 3D environment interaction of gestures made in air. After some attempts interaction was achieved by implementing communication sockets between the application on the Android device and 3D application that is hosted on a computer with windows 7, and gestures capturing in the air is done by the system Tracking Tools developed by the Optitrack company it captures movements with infrared cameras and markers on the fingers, which sends data to this application gestures, these equipment are owned by the Decoroso Crespo laboratory of the Polytechnic University of Madrid. Once achieved the interaction of applications has been conducted performance tests with ten students of the university master of the Universidad Politécnica de Madrid, each has answered a series of surveys to get results on how usable is the prototype, the user experience and that improvements could be made on this.