94 resultados para web user interface
Resumo:
Este documento es una guía para el desarrollo de una aplicación para dispositivos móviles en Android. Dicha aplicación combina las técnicas de visión por computador para calibrar la cámara del dispositivo y localizar un elemento en el espacio en base a esos los parámetros calculados en la calibración. El diseño de la aplicación incluye las decisiones sobre la forma en que se reciben los inputs de la aplicación, que patrones se utilizan en la calibración y en la localización y como se muestran los resultados finales al usuario. También incluye un diagrama de flujo de información que representa el tránsito de esta entre los diferentes módulos. La implementación comienza con la configuración de un entorno para desarrollar aplicaciones con parte nativa en Android, después comenta el código de la aplicación paso por paso incluyendo comentarios sobre los archivos adicionales necesarios para la compilación y finalmente detalla los archivos dedicados a la interfaz. Los experimentos incluyen una breve descripción sobre cómo interpretar los resultados seguidos de una serie de imágenes tomadas de la aplicación con diferentes localizaciones del patrón. En la entrega se incluye también un video. En el capítulo de resultados y conclusiones podemos encontrar observaciones sobre el desarrollo de la práctica, opiniones sobre su utilidad, y posibles mejoras.---ABSTRACT---This document is a guide that describes the development of and application for mobile devices in Android OS. The application combines computer vision techniques to calibrate the device camera and locate an element in the real world based on the parameters of the calibration The design of the application includes the decisions over the way that the application receives its input data, the patterns used in the calibration and localization and how the results are shown to the user. It also includes a flow chart that describes how the information travels along the application modules. The development begins with the steps necessary to configure the environment to develop native Android applications, then it explains the code step by step, including commentaries on the additional files necessary to build the application and details the files of the user interface. The experiments chapter explains the way the results are shown in the experiments before showing samples of different pattern localizations. There is also a video attached. In the conclusions chapter we can find observations on the development of the TFG, opinions about its usefulness, and possibilities of improvement in the future.
Resumo:
El proyecto fin de carrera de herramienta de apoyo a la docencia en Sistemas Operativos quiere ayudar al alumno a entender el funcionamiento de un planificador a corto plazo. Lo hace mediante una representación gráfica de procesos que ocupan o el procesador o distintas unidades de entrada/salida mientras transcurre el tiempo. El tiempo está dividido en ciclos de reloj de un procesador, a lo que a continuación se referirá como unidades de tiempo. Los procesos están definidos por su nombre, la instante de entrada que entran al sistema, su prioridad y la secuencia de unidades de tiempo en el procesador y unidades de entrada/salida que necesitan para terminar su trabajo. El alumno puede configurar el sistema a su gusto en cuanto al número y comportamiento de las unidades de entrada/salida. Puede definir que una unidad solo permita acceso exclusivo a los procesos, es decir que solo un proceso puede ocuparla simultáneamente, o que permita el acceso múltiple a sus recursos. El alumno puede construir un planificador a corto plazo propio, integrarlo en el sistema y ver cómo se comporta. Se debe usar la interfaz Java proporcionada para su construcción. La aplicación muestra datos estadísticos como por ejemplo la eficiencia del sistema (el tiempo activo de la CPU dividido por el tiempo total de la simulación), tiempos de espera de los procesos, etc. Se calcula después de cada unidad de tiempo para que el alumno pueda ver el momento exacto donde la simulación tomó un giro inesperado. La aplicación está compuesta por un motor de simulación que contiene toda la lógica y un conjunto de clases que forman la interfaz gráfica que se presenta al usuario. Estos dos componentes pueden ser reemplazados siempre y cuando se mantenga la definición de sus conectores igual. La aplicación la he hecho de manejo muy simple e interfaz fácil de comprender para que el alumno pueda dedicar todo su tiempo a probar distintas configuraciones y situaciones y así entender mejor la asignatura. ABSTRACT. The project is called “Tool to Support Teaching of the Subject Operating Systems” and is an application that aims to help students understand on a deeper level the inner workings of how an operating system handles multiple processes in need of CPU time by the means of a short-term planning algorithm. It does so with a graphical representation of the processes that occupy the CPU and different input/output devices as time passes by. Time is divided in CPU cycles, from now on referred to as time units. The processes are defined by their name, the moment they enter the system, their priority and the sequence of time units they need to finish their job. The student can configure the system by changing the number and behavior of the input/output devices. He or she can define whether a device should only allow exclusive access, i.e. only one process can occupy it at any given time, or if it should allow multiple processes to access its resources. The student can build a planning algorithm of his or her own and easily integrate it into the system to see how it behaves. The provided Java interface and the programming language Java should be used to build it. The application shows statistical data, e.g. the efficiency of the system (active CPU time divided by total simulation time) and time spent by the processes waiting in queues. The data are calculated after passing each time unit in order for the student to see the exact moment where the simulation took an unexpected turn. The application is comprised of a simulation motor, which handles all the logic, and a set of classes, which is the graphical user interface. These two parts can be replaced individually if the definition of the connecting interfaces stays the same. I have made the application to be very easy to use and with an easy to understand user interface so the student can spend all of his or her time trying out different configurations and scenarios in order to understand the subject better.
Resumo:
Para estudiar la acústica en recintos se utilizan herramientas de modelado acústico de salas y la auralización de estos recintos. En muchos casos el mismo software de modelado genera las auralizaciones que simulan como se escucharía un determinado audio en un punto del recinto. En el presente trabajo se intenta estudiar la calidad de las respuestas impulsivas simuladas generadas por una de estas herramientas de modelado. El proyecto consiste en realizar una evaluación subjetiva de la diferenciación entre las respuestas impulsivas medidas y simuladas en diferentes recintos, comparándola con los parámetros acústicos objetivos que se han obtenido mediante una evaluación objetiva anterior. Para ello, se desarrolla una herramienta software que, con las respuestas impulsivas simuladas (generadas por un software de modelado acústico, ODEON) y las respuestas impulsivas medidas, genere: las auralizaciones correspondientes; un test de escucha para hacer la evaluación subjetiva de las auralizaciones obtenidas y una interfaz de usuario para interaccionar con los oyentes a evaluar; y que almacene los resultados del test de escucha. Además se llevará a cabo la evaluación subjetiva (test de escucha) con un grupo de oyentes, con los que posteriormente se obtendrán los resultados para poder comparar con los valores objetivos. A partir de los resultados del test de escucha, se estudiará la relación entre las diferencias de las respuestas impulsivas (medidas y simuladas) con respecto a: 1) parámetros objetivos (diferencias en valores de JND), 2) evaluación subjetiva (diferenciación subjetiva con el test de escucha) y, 3) comparación entre ambos. Finalmente, se obtendrán las conclusiones derivadas de este estudio. ABSTRACT. Tools of Room Acoustic Modeling and the auralization of these rooms have been used to study room Acoustics. In many cases, the modeling software itself generates the auralizations which simulate the sound of a particular audio in a particular position in a room. The quality of simulated impulse responses generated by a modelling tool has been studied in this project. The project carries out a subjective evaluation of the differences between measured and simulated impulse responses in different rooms, and in comparing them with objective acoustical parameters which have been obtained from the previous objective evaluation. For this, a software tool has been developed. This software, with simulated (generated by a modelling software, ODEON) and measured impulse responses generate: the correspondent auralizations, listening test (which carries out the subjective evaluation of the auralization) and a user interface to interact with listeners. This tool also stores the listening test results. In addition, the subjective evaluation (listening test) will be carried out with a group of listeners, from who we will get the results to compare subjective values. The differences between impulse responses (both measured and simulated) are obtained from the results of the listening test and these differences have been studied regarding: 1) objective parameters (difference in JND values); 2) subjetive evaluation (subjective differences with the listening test); 3) comparison between both. Eventually the conclussions derivative from this project will be obtained.
Resumo:
Este trabajo tiene como objeto la evaluación subjetiva de la diferenciación entre señales auralizadas con respuestas impulsivas simuladas y con respuestas impulsivas medidas en diferentes recintos. Para ello, se ha desarrollado una herramienta software que genera las auralizaciones correspondientes, proporciona una interfaz de usuario para la realización de un test subjetivo de escucha y almacena los resultados de dicho test. Se presentan los resultados de un test de escucha realizado a 58 oyentes, utilizando diferentes señales de prueba, a partir de las respuestas impulsivas simuladas y medidas en seis recintos con características acústicas distintas. ABSTRACT. This work aims the subjective assessment of the differentiation between auralization signals with impulse responses simulated and impulse responses measured at different rooms. To this end, we have developed a software tool that generates the corresponding auralizations, provides a user interface to perform a subjective listening test and stores the results of the test. In this project we present the results of a listening test performed for 58 listeners, using different test signals from the impulse responses measured and simulated in six rooms with different acoustic characteristics.
Resumo:
The graphical user interface (GUI) are all graphic elements that help to communicate with a system. The design of a GUI allow to land the central idea of a draft information technology. Today technology has become one of the largest and most useful tools to automate and facilitate processes for that reason fit into any kind of productive sectors, for example, in the health sector. The CAD systems (Systems Computer Aided Diagnosis) are the type of technology used in the health sector, in order to automate online modular learning environment with a fast placed in service. In the present paper the use of a Learning Management Systems (LMS) as continuous education tool is proposed.
Resumo:
El objetivo de este proyecto es evaluar la mejora de rendimiento que aporta la paralelización de algoritmos de procesamiento de imágenes, para su ejecución en una tarjeta gráfica. Para ello, una vez seleccionados los algoritmos a estudio, fueron desarrollados en lenguaje C++ bajo el paradigma secuencial. A continuación, tomando como base estas implementaciones, se paralelizaron siguiendo las directivas de la tecnología CUDA (Compute Unified Device Architecture) desarrollada por NVIDIA. Posteriormente, se desarrolló un interfaz gráfico de usuario en Visual C#, para una utilización más sencilla de la herramienta. Por último, se midió el rendimiento de cada uno de los algoritmos, en términos de tiempo de ejecución paralela y speedup, mediante el procesamiento de una serie de imágenes de distintos tamaños.---ABSTRACT---The aim of this Project is to evaluate the performance improvement provided by the parallelization of image processing algorithms, which will be executed on a graphics processing unit. In order to do this, once the algorithms to study were selected, each of them was developed in C++ under sequential paradigm. Then, based on these implementations, these algorithms were implemented using the compute unified device architecture (CUDA) programming model provided by NVIDIA. After that, a graphical user interface (GUI) was developed to increase application’s usability. Finally, performance of each algorithm was measured in terms of parallel execution time and speedup by processing a set of images of different sizes.
Resumo:
Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.
Resumo:
Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.
Resumo:
The conception of IoT (Internet of Things) is accepted as the future tendency of Internet among academia and industry. It will enable people and things to be connected at anytime and anyplace, with anything and anyone. IoT has been proposed to be applied into many areas such as Healthcare, Transportation,Logistics, and Smart environment etc. However, this thesis emphasizes on the home healthcare area as it is the potential healthcare model to solve many problems such as the limited medical resources, the increasing demands for healthcare from elderly and chronic patients which the traditional model is not capable of. A remarkable change in IoT in semantic oriented vision is that vast sensors or devices are involved which could generate enormous data. Methods to manage the data including acquiring, interpreting, processing and storing data need to be implemented. Apart from this, other abilities that IoT is not capable of are concluded, namely, interoperation, context awareness and security & privacy. Context awareness is an emerging technology to manage and take advantage of context to enable any type of system to provide personalized services. The aim of this thesis is to explore ways to facilitate context awareness in IoT. In order to realize this objective, a preliminary research is carried out in this thesis. The most basic premise to realize context awareness is to collect, model, understand, reason and make use of context. A complete literature review for the existing context modelling and context reasoning techniques is conducted. The conclusion is that the ontology-based context modelling and ontology-based context reasoning are the most promising and efficient techniques to manage context. In order to fuse ontology into IoT, a specific ontology-based context awareness framework is proposed for IoT applications. In general, the framework is composed of eight components which are hardware, UI (User Interface), Context modelling, Context fusion, Context reasoning, Context repository, Security unit and Context dissemination. Moreover, on the basis of TOVE (Toronto Virtual Enterprise), a formal ontology developing methodology is proposed and illustrated which consists of four stages: Specification & Conceptualization, Competency Formulation, Implementation and Validation & Documentation. In addition, a home healthcare scenario is elaborated by listing its well-defined functionalities. Aiming at representing this specific scenario, the proposed ontology developing methodology is applied and the ontology-based model is developed in a free and open-source ontology editor called Protégé. Finally, the accuracy and completeness of the proposed ontology are validated to show that this proposed ontology is able to accurately represent the scenario of interest.
Resumo:
El objetivo de este proyecto es la instalación del equipamiento necesario y el desarrollo de una ampliación informática para facilitar las medidas de radiofrecuencia en una cámara anecoica. Dichas medidas se llevarán a cabo en la nueva cámara anecoica de la ETSIST. Con este planteamiento se escogieron y montaron algunos equipos que la instalación construida no disponía y se llevó a cabo la puesta en marcha de los mismos. Posteriormente se diseñó y desarrolló el programa informático que controlaba los equipos instalados y se encargaba de todo el proceso de medida. De entre todas las opciones posibles, se escogió la plataforma LabVIEW para desarrollar el programa. Este entorno facilitaba enormemente la comunicación con los equipos a través de GPIB y permitía diseñar un programa de forma rápida. Además, se simplificó la interfaz de usuario, desarrollándola de forma intuitiva, para que cualquier persona pudiera manejar el programa sin tener que realizar un estudio previo de su funcionamiento. Una vez construida la aplicación se probó el sistema y se realizaron medidas de diferentes antenas diseñadas para otros proyectos docentes y de investigación. ABSTRACT. The goal of this project is to install the necessary equipment and the development of a software to facilitate measurements in an anechoic RF camera. These measures will be carried out in the ETSIST anechoic chamber. With this approach were chosen and set up some devices that the built facility did not have and the implementation of them was held. Later, the control software was designed and developed to command the installed equipment and it was responsible for the entire measurement process. Of all the possible options, LabVIEW platform was chosen to develop the program. This environment greatly facilitated communication with computers through GPIB bus and it allowed to design a program quickly. In addition, the user interface was simplify, developing intuitive so that anyone could use the program without having to make a preliminary study of its operation. Once the application was built the system was tested and several measurements of different antennas designed for other educational and research projects were carried out.
Resumo:
El objetivo del presente trabajo es el estudio, diseño e implementación de una herramienta software, con interfaz gráfica de usuario, que permita aplicar diversas técnicas de análisis de textos de forma simple. Las técnicas de análisis, que serán implementadas en la herramienta, extraerán información de textos escritos en un lenguaje humano, es decir un lenguaje no artificial, y se le presentará al usuario. La herramienta permite la obtención de tres tipos de información: categorías a las que pertenece un texto, dentro de un conjunto de categorías predeterminadas; grupos de textos que son similares entre sí; y la polaridad de opinión expresada en un texto hacia el tema u objeto del que trata, que puede ser neutra, positiva o negativa.---ABSTRACT---The aim of this work is to study, design and implement a software tool, with graphical user interface, which will enable a user to easily apply various text analysis techniques. The techniques implemented in the tool will extract information from texts written in natural language, i.e. a non artificial language, and will present it to the user. The tool will extract three different types of information about a given set of texts: their categories (from a predefined set of categories), groups of similar texts, the polarity of the attitude expressed in the texts towards their topic.
Resumo:
Sabor, Software de Análisis de BOcinas y Reflectores, es una herramienta didáctica la cual es utilizada en los laboratorios de la escuela para realizar prácticas de la asignatura Antenas y Compatibilidad Electromagnética, esta herramienta da a los alumnos una visión gráfica de lo que se enseña en clase de teoría de lo que son los campos en las aperturas de los reflectores. El proyector pretende sustituir al primer Sabor , ya que se queda obsoleto debido al sistema operativo, ya que funciona solo para Windows XP y con ordenadores de 32 bits, y también realizar mejoras y corregir errores de la versión anterior. El proyecto se ha desarrollado en Matlab que es un software matemático con grandes ventajas en cuanto a cálculo, desarrollo gráfico, y a la creación de nuevos algoritmos en su propio lenguaje y además está disponible para las plataformas Unix, Windows, Mac OSX y GNU/Linux. El objetivo del proyecto ha sido implementar, al igual que las versiones anteriores, cinco tipos de reflectores, como son: Parabólico, Offset, Cassegrain y los dos Dobles Offset, Cassegrain y Gregorian, y han sido analizados con un alimentador ideal ,cos-q, y por último los resultados obtenidos se han comparado con las versiones anteriores de Sabor, como son Sabor 3.0 y el primer Sabor. El proyecto consta de partes muy bien diferencias como son : La interpretación correctas de las formulas que se han utilizado para la realización de este proyecto ,dichas formulas han sido las dadas por el proyecto fin de carrera titulado Sabor3.0 de Francisco Egea Castejón. GUIDE, the graphical user interface development environment, con el que se creó: GUI, graphical user interface, que es la parte de Matlab dedicada a crear interfaces de usuario , herramienta utilizada para crear nuestras distintas ventanas dedicadas para la obtención de datos para analizar los distintos reflectores y para mostrar por pantalla los distintos resultados. Programación Orientada a Objetos de Matlab y sus distintas propiedades como son la herencia lo cual es muy útil para ocupar menos memoria ya que con un único método podemos realizar distintos cálculos con los distintos reflectores, objetos, solo cambiando las propiedades de cada objeto Y por último ha sido la realización de validación de los resultados con la ayuda de las versiones anteriores de Sabor, que están detallados en el capítulo 5 y la unión con bocinas del proyecto fin de carrera Análisis de Bocinas en Matlab de Javier Montero. Por otra parte tenemos las mejoras realizadas a las antiguas versiones como son: realización de registros que el usuario puede guardar y cargar con las distintas variables, también se ha realizado un fichero .txt en el que consta la amplitud del campo con su respectiva theta para que el usuario pueda visualizarlo en cualquier plataforma gráfica de datos como por ejemplo exel. ABSTRACT. Sabor, Software de Análisis de BOcinas y Reflectores, is a teaching tool, which is used to do laboratory practice in the subject of Antennas y Compatibilidad Electromagnética, this tool gives students a graphic view of the knowledge that are given in theory class in regard to aperture field of reflectors. This project intend to replace the first Sabor, because it is outdated, due to the operating system, because Sabor works only with Widows XP and computer with 32 bits, and to make improves and correct errors that were detected in the last version of Sabor too. This project has been carried out in Matlab, which is a mathematical software with high-level language for numerical computation, visualization and application development, and furthermore it is available to different platforms such as Unix, Windows ,Mac OSX and GNU/Linux This project has focused on implementing, the same as last versions, five kind of reflectors, such as : Parabolic, Offset, Cassegrain and two offset dual reflector Cassegrain y Gregorian ,and these were analysed with a cos-q ideal feed, and finally the results were checked with the versions of Sabor, as well as Sabor 3.0 and the first Sabor. This project consist of four parts: The correct interpretation of the formulas , which were used to do this project, from the final project Sabor3.0 by Francisco Egea Castejón. GUIDE, the graphical user interface development environment, tool that was used to create : GUI, graphical user interface, part of Matlab dedicated to create user interface. Object Oriented Programming of Matlab and different properties like inheritance, that is very useful for saving memory space because with only one method we can analyse different kind of reflectors, object, only change the properties of the object. At finally, the results were contrasted with the results from the previous versions and the link reflectors with horns from the final project Análisis de Bocinas en Matlab by Javier Montero. On the other hand, we have the improvements such as: registers and .txt file. The registers are used by user to save and load different variables and .txt file is useful because it allows to the user plotting in different platforms for example exel.
Resumo:
Vivimos en la era de la información y del internet, tenemos la necesidad cada vez mayor de conseguir y compartir la información que existe. Esta necesidad se da en todos los ámbitos existentes pero con más ahínco probablemente sea en el área de la medicina, razón por la cual se llevan a cabo muchas investigaciones de distinta índole, lo cual ha llevado a generar un cantidad inimaginable de información y esta su vez muy heterogénea, haciendo cada vez más difícil unificarla y sacar conocimiento o valor agregado. Por lo cual se han llevado a cabo distintas investigaciones para dar solución a este problema, quizás la más importante y con más crecimiento es la búsqueda a partir de modelos de ontologías mediante el uso de sistemas que puedan consultarla. Este trabajo de Fin de Master hace hincapié es la generación de las consultas para poder acceder a la información que se encuentra de manera distribuida en distintos sitios y de manera heterogénea, mediante el uso de una API que genera el código SPARQL necesario. La API que se uso fue creada por el grupo de informática biomédica. También se buscó una manera eficiente de publicar esta API para su futuro uso en el proyecto p-medicine, por lo cual se creó un servicio RESTful para permitir generar las consultas deseadas desde cualquier plataforma, haciendo en esto caso más accesible y universal. Se le dio también una interfaz WEB a la API que permitiera hacer uso de la misma de una manera más amigable para el usuario. ---ABSTRACT---We live in the age of information and Internet so we have the need to consult and share the info that exists. This need comes is in every scope of our lives, probably one of the more important is the medicine, because it is the knowledge area that treats diseases and it tries to extents the live of the human beings. For that reason there have been many different researches generating huge amounts of heterogeneous and distributed information around the globe and making the data more difficult to consult. Consequently there have been many researches to look for an answer about to solve the problem of searching heterogeneous and distributed data, perhaps the more important if the one that use ontological models. This work is about the generation of the query statement based on the mapping API created by the biomedical informatics group. At the same time the project looks for the best way to publish and make available the API for its use in the p-medicine project, for that reason a RESTful API was made to allow the generation of consults from within the platform, becoming much more accessible and universal available. A Web interface was also made to the API, to let access to the final user in a friendly
Resumo:
Context: This paper addresses one of the major end-user development (EUD) challenges, namely, how to pack today?s EUD support tools with composable elements. This would give end users better access to more components which they can use to build a solution tailored to their own needs. The success of later end-user software engineering (EUSE) activities largely depends on how many components each tool has and how adaptable components are to multiple problem domains. Objective: A system for automatically adapting heterogeneous components to a common development environment would offer a sizeable saving of time and resources within the EUD support tool construction process. This paper presents an automated adaptation system for transforming EUD components to a standard format. Method: This system is based on the use of description logic. Based on a generic UML2 data model, this description logic is able to check whether an end-user component can be transformed to this modeling language through subsumption or as an instance of the UML2 model. Besides it automatically finds a consistent, non-ambiguous and finite set of XSLT mappings to automatically prepare data in order to leverage the component as part of a tool that conforms to the target UML2 component model. Results: The proposed system has been successfully applied to components from four prominent EUD tools. These components were automatically converted to a standard format. In order to validate the proposed system, rich internet applications (RIA) used as an operational support system for operators at a large services company were developed using automatically adapted standard format components. These RIAs would be impossible to develop using each EUD tool separately. Conclusion: The positive results of applying our system for automatically adapting components from current tool catalogues are indicative of the system?s effectiveness. Use of this system could foster the growth of web EUD component catalogues, leveraging a vast ecosystem of user-centred SaaS to further current EUSE trends.
Resumo:
En este trabajo de fin de grado se llevará a cabo la elaboración de una aplicación web de gestión de gastos personales desde sus inicios, hasta su completo funcionamiento. Estas aplicaciones poseen un crecimiento emergente en el mercado, lo cual implica que la competencia entre ellas es muy elevada. Por ello el diseño de la aplicación que se va a desarrollar en este trabajo ha sido delicadamente cuidado. Se trata de un proceso minucioso el cual aportará a cada una de las partes de las que va a constar la aplicación características únicas que se plasmaran en funcionalidades para el usuario, como son: añadir sus propios gastos e ingresos mensuales, confeccionar gráficos de sus principales gastos, obtención de consejos de una fuente externa, etc… Estas funcionalidades de carácter único junto con otras más generalistas, como son el diseño gráfico en una amplia gama de colores, harán su manejo más fácil e intuitivo. Hay que destacar que para optimizar su uso, la aplicación tendrá la característica de ser responsive, es decir, será capaz de modificar su interfaz según el tamaño de la pantalla del dispositivo desde el que se acceda. Para su desarrollo, se va a utilizar una de las tecnologías más novedosas del mercado y siendo una de las más revolucionarias del momento, MEAN.JS. Con esta innovadora tecnología se creará la aplicación de gestión económica de gastos personales. Gracias al carácter innovador de aplicar esta tecnología novedosa, los retos que plantea este proyecto son muy variados, desde cómo estructurar las carpetas del proyecto y toda la parte de backend hasta como realizar el diseño de la parte de frontend. Además una vez finalizado su desarrollo y puesta en marcha se analizaran posibles mejoras para poder perfeccionarla en su totalidad. ABSTRACT In this final degree project will take out the development of a web application from its inception, until its full performance management. These applications have an emerging market growth, implying that competition between them is very high. Therefore the design of the application that will be developed in this work has been delicately care. It's a painstaking process which will provide each of the parties which will contain the application unique features that were translated into functionality for the user, such as: add their own expenses and monthly income, make graphs of your major expenses, obtaining advice from an external source, etc... These features of unique character together with other more general, such as graphic design in a wide range of colors, will make more easy and intuitive handling. It should be noted that to optimize its use, the application will have the characteristic of being responsive, will be able to modify your interface according to the size of the screen of the device from which are accessed. For its development, it is to use one of the newest technologies on the market and being one of the most revolutionary moment, MEAN. JS. The economic management of personal expenses application will be created with this innovative technology. Thanks to the innovative nature of applying this new technology, the challenges posed by this project are varied, from how to structure the folders of the project and all the backend part up to how to perform the part of frontend design. In addition once finished its development and commissioning possible improvements will analyze to be able to perfect it in its entirety.