48 resultados para frequency domain decomposition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

El flameo o flutter es un fenómeno vibratorio debido a la interacción de fuerzas inerciales, elásticas y aerodinámicas. Consiste en un intercambio de energía, que se puede observar en el cambio de amortiguamientos, entre dos o más modos estructurales, denominados modos críticos, cuyas frecuencias tienden a acercarse (coalescencia de frecuencias). Los ensayos en vuelo de flameo suponen un gran riesgo debido a la posibilidad de una perdida brusca de estabilidad aeroelástica (flameo explosivo) con la posibilidad de destrucción de la aeronave. Además existen otros fenómenos asociados que pueden aparecer como el LCO (Limit Cycle Oscillation) y la interacción con los mandos de vuelo. Debido a esto, se deben llevar a cabo análisis exhaustivos, que incluyen GVT (vibraciones en tierra), antes de comenzar los ensayos en vuelo, y estos últimos deben ser ejecutados con robustos procedimientos. El objetivo de los ensayos es delimitar la frontera de estabilidad sin llegar a ella, manteniéndose siempre dentro de la envolvente estable de vuelo. Para lograrlo se necesitan métodos de predicción, siendo el “Flutter Margin”, el más utilizado. Para saber cuánta estabilidad aeroelástica tiene el avión y lo lejos que está de la frontera de estabilidad (a través de métodos de predicción) los parámetros modales, en particular la frecuencia y el amortiguamiento, son de vital importancia. El ensayo en vuelo consiste en la excitación de la estructura a diferentes condiciones de vuelo, la medición de la respuesta y su análisis para obtener los dos parámetros mencionados. Un gran esfuerzo se dedica al análisis en tiempo real de las señales como un medio de reducir el riesgo de este tipo de ensayos. Existen numerosos métodos de Análisis Modal, pero pocos capaces de analizar las señales procedentes de los ensayos de flameo, debido a sus especiales características. Un método novedoso, basado en la Descomposición por Valores Singulares (SVD) y la factorización QR, ha sido desarrollado y aplicado al análisis de señales procedentes de vuelos de flameo del F-18. El método es capaz de identificar frecuencia y amortiguamiento de los modos críticos. El algoritmo se basa en la capacidad del SVD para el análisis, modelización y predicción de series de datos con características periódicas y en su capacidad de identificar el rango de una matriz, así como en la aptitud del QR para seleccionar la mejor base vectorial entre un conjunto de vectores para representar el campo vectorial que forman. El análisis de señales de flameo simuladas y reales demuestra, bajo ciertas condiciones, la efectividad, robustez, resistencia al ruido y capacidad de automatización del método propuesto. ABSTRACT Flutter involves the interaction between inertial, elastic and aerodynamic forces. It consists on an exchange of energy, identified by change in damping, between two or more structural modes, named critical modes, whose frequencies tend to get closer to each other (frequency coalescence). Flight flutter testing involves high risk because of the possibility of an abrupt lost in aeroelastic stability (hard flutter) that may lead to aircraft destruction. Moreover associated phenomena may happen during the flight as LCO (Limit Cycle Oscillation) and coupling with flight controls. Because of that, intensive analyses, including GVT (Ground Vibration Test), have to be performed before beginning the flights test and during them consistent procedures have to be followed. The test objective is to identify the stability border, maintaining the aircraft always inside the stable domain. To achieve that flutter speed prediction methods have to be used, the most employed being the “Flutter Margin”. In order to know how much aeroelastic stability remains and how far the aircraft is from the stability border (using the prediction methods), modal parameters, in particular frequency and damping are paramount. So flight test consists in exciting the structure at various flight conditions, measuring the response and identifying in real-time these two parameters. A great deal of effort is being devoted to real-time flight data analysis as an effective way to reduce the risk. Numerous Modal Analysis algorithms are available, but very few are suitable to analyze signals coming from flutter testing due to their special features. A new method, based on Singular Value Decomposition (SVD) and QR factorization, has been developed and applied to the analysis of F-18 flutter flight-test data. The method is capable of identifying the frequency and damping of the critical aircraft modes. The algorithm relies on the capability of SVD for the analysis, modelling and prediction of data series with periodic features and also on its power to identify matrix rank as well as QR competence for selecting the best basis among a set of vectors in order to represent a given vector space of such a set. The analysis of simulated and real flutter flight test data demonstrates, under specific conditions, the effectiveness, robustness, noise-immunity and the capability for automation of the method proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we address the new reduction method called Proper Generalized Decomposition (PGD) which is a discretization technique based on the use of separated representation of the unknown fields, specially well suited for solving multidimensional parametric equations. In this case, it is applied to the solution of dynamics problems. We will focus on the dynamic analysis of an one-dimensional rod with a unit harmonic load of frequency (ω) applied at a point of interest. In what follows, we will present the application of the methodology PGD to the problem in order to approximate the displacement field as the sum of the separated functions. We will consider as new variables of the problem, parameters models associated with the characteristic of the materials, in addition to the frequency. Finally, the quality of the results will be assessed based on an example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional direct numerical simulations (DNS) have been performed on a finite-size hemispherecylinder model at angle of attack AoA = 20◦ and Reynolds numbers Re = 350 and 1000. Under these conditions, massive separation exists on the nose and lee-side of the cylinder, and at both Reynolds numbers the flow is found to be unsteady. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed in order to study the primary instability that triggers unsteadiness at Re = 350. The dominant coherent flow structures identified at the lower Reynolds number are also found to exist at Re = 1000; the question is then posed whether the flow oscillations and structures found at the two Reynolds numbers are related. POD and DMD computations are performed using different subdomains of the DNS computational domain. Besides reducing the computational cost of the analyses, this also permits to isolate spatially localized oscillatory structures from other, more energetic structures present in the flow. It is found that POD and DMD are in general sensitive to domain truncation and noneducated choices of the subdomain may lead to inconsistent results. Analyses at Re = 350 show that the primary instability is related to the counter rotating vortex pair conforming the three-dimensional afterbody wake, and characterized by the frequency St ≈ 0.11, in line with results in the literature. At Re = 1000, vortex-shedding is present in the wake with an associated broadband spectrum centered around the same frequency. The horn/leeward vortices at the cylinder lee-side, upstream of the cylinder base, also present finite amplitude oscillations at the higher Reynolds number. The spatial structure of these oscillations, described by the POD modes, is easily differentiated from that of the wake oscillations. Additionally, the frequency spectra associated with the lee-side vortices presents well defined peaks, corresponding to St ≈ 0.11 and its few harmonics, as opposed to the broadband spectrum found at the wake.