84 resultados para embedded system design
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Dynamically Reconfigurable Systems are attracting a growing interest, mainly due to the emergence of novel applications based on this technology. However, commercial tools do not provide enough flexibility to design solutions, while keeping an acceptable design productivity. In this paper, a novel design flow is proposed, targeting dynamically reconfigurable systems. It is fully supported by a tool called Dreams, which is able to implement flexible systems, starting from a set of netlists corresponding to the modules, as well as a system description provided by the user. The tool automatically post-processes the nets, implementing a solution for the communications between reconfigurable regions, as well as the handling of routing conflicts, by means of a custom router. Since the design process of every module and the static system are independent, the proposed flow is compatible with system upgrade at run-time. In this paper, a use case corresponding to the design of a highly regular and parallel mesh-type architecture is described, in order to show the architectural flexibility offered by the tool.
Resumo:
We attempt to integrate and start up the set of necessary tools to deploy the design cycle of embedded systems based on Embedded Linux on a "Cyclone V SoC" made by Altera. First, we will analyze the available tools for designing the hardware system of the SoCkit development kit, made by Arrow, which has a "Cyclone V SoC" system (based on a "ARM Cortex-A9 MP Core" architecture). When designing the SoCkit board hardware, we will create a new peripheral to integrate it into the hardware system, so it can be used as any other existent resource of the SoCkit board previously configured. Next, we will analyze the tools to generate an Embedded Linux distribution adapted to the SoCkit board. In order to generate the Linux distribution we will use, on the one hand, a software package from Yocto recommended by Altera; on the other hand, the programs and tools of Altera, Embedded Development Suite. We will integrate all the components needed to build the Embedded Linux distribution, creating a complete and functional system which can be used for developing software applications. Finally, we will study the programs for developing and debugging applications in C or C++ language that will be executed in this hardware platform, then we will program a Linux application as an example to illustrate the use of SoCkit board resources. RESUMEN Se pretende integrar y poner en funcionamiento el conjunto de herramientas necesarias para desplegar el ciclo de diseño de sistemas embebidos basados en "Embedded Linux" sobre una "Cyclone V SoC" de Altera. En primer lugar, se analizarán las diversas herramientas disponibles para diseñar el sistema hardware de la tarjeta de desarrollo SoCkit, fabricada por Arrow, que dispone de un sistema "Cyclone V SoC" (basado en una arquitectura "ARM Cortex A9 MP Core"). En el diseño hardware de la SoCkit se creará un periférico propio y se integrará en el sistema, pudiendo ser utilizado como cualquier otro recurso de la tarjeta ya existente y configurado. A continuación, también se analizarán las herramientas para generar una distribución de "Embedded Linux" adaptado a la placa SoCkit. Para generar la distribución de Linux se utilizará, por una parte, un paquete software de Yocto recomendado por Altera y, por otra parte, las propias herramientas y programas de Altera. Se integrarán todos los componentes necesarios para construir la distribución Linux, creando un sistema completo y funcional que se pueda utilizar para el desarrollo de aplicaciones software. Por último, se estudiarán las herramientas para el diseño y depuración de aplicaciones en lenguaje C ó C++ que se ejecutarán en esta plataforma hardware. Se pretende desarrollar una aplicación de ejemplo para ilustrar el uso de los recursos más utilizados de la SoCkit.
Resumo:
The continuous increment of processors computational power and the requirements on additional functionality and services are motivating a change in the way embedded systems are built. Components with different criticality level are allocated in the same processor, which give rise to mixed-criticality systems. The use of partitioned systems is a way of preventing undesirable interferences between components with different criticality level. An hypervisor provides these partitions or virtual machines, ensuring spatial, temporal and fault isolation between them. The purpose of this paper is to illustrate the development of a mixed-critical system. The attitude control subsystem is used for showing the different steps, which are supported by a toolset developed in the context of the MultiPARTES research project.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.d
Resumo:
The development of a novel optical design for the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) that utilizes a built-in spectrum splitting concept is presented. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it. The POE and SOE perform Köhler integration to produce light homogenization on the receiver. The system uses a combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-PointContact (BPC) silicon cell for efficient spectral utilization, and an external confinement technique for recovering the 3J cell’s reflection. A design target of an “equivalent” cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level greater than 500X with a wide acceptance angle of ±1º. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%
Resumo:
The ITER CODAC design identifies slow and fast plant system controllers (PSC). The gast OSCs are based on embedded technologies, permit sampling rates greater than 1 KHz, meet stringent real-time requirements, and will be devoted to data acquisition tasks and control purposes. CIEMAT and UPM have implemented a prototype of a fast PSC based on commercial off-the-shelf (COTS) technologies with PXI hardware and software based on EPICS
Resumo:
A generic bio-inspired adaptive architecture for image compression suitable to be implemented in embedded systems is presented. The architecture allows the system to be tuned during its calibration phase. An evolutionary algorithm is responsible of making the system evolve towards the required performance. A prototype has been implemented in a Xilinx Virtex-5 FPGA featuring an adaptive wavelet transform core directed at improving image compression for specific types of images. An Evolution Strategy has been chosen as the search algorithm and its typical genetic operators adapted to allow for a hardware friendly implementation. HW/SW partitioning issues are also considered after a high level description of the algorithm is profiled which validates the proposed resource allocation in the device fabric. To check the robustness of the system and its adaptation capabilities, different types of images have been selected as validation patterns. A direct application of such a system is its deployment in an unknown environment during design time, letting the calibration phase adjust the system parameters so that it performs efcient image compression. Also, this prototype implementation may serve as an accelerator for the automatic design of evolved transform coefficients which are later on synthesized and implemented in a non-adaptive system in the final implementation device, whether it is a HW or SW based computing device. The architecture has been built in a modular way so that it can be easily extended to adapt other types of image processing cores. Details on this pluggable component point of view are also given in the paper.
Resumo:
The ITER CODAC design identifies slow and fast plant system controllers (PSC). The gast OSCs are based on embedded technologies, permit sampling rates greater than 1 KHz, meet stringent real-time requirements, and will be devoted to data acquisition tasks and control purposes. CIEMAT and UPM have implemented a prototype of a fast PSC based on commercial off-the-shelf (COTS) technologies with PXI hardware and software based on EPICS
Resumo:
This dissertation, whose research has been conducted at the Group of Electronic and Microelectronic Design (GDEM) within the framework of the project Power Consumption Control in Multimedia Terminals (PCCMUTE), focuses on the development of an energy estimation model for the battery-powered embedded processor board. The main objectives and contributions of the work are summarized as follows: A model is proposed to obtain the accurate energy estimation results based on the linear correlation between the performance monitoring counters (PMCs) and energy consumption. the uniqueness of the appropriate PMCs for each different system, the modeling methodology is improved to obtain stable accuracies with slight variations among multiple scenarios and to be repeatable in other systems. It includes two steps: the former, the PMC-filter, to identify the most proper set among the available PMCs of a system and the latter, the k-fold cross validation method, to avoid the bias during the model training stage. The methodology is implemented on a commercial embedded board running the 2.6.34 Linux kernel and the PAPI, a cross-platform interface to configure and access PMCs. The results show that the methodology is able to keep a good stability in different scenarios and provide robust estimation results with the average relative error being less than 5%. Este trabajo fin de máster, cuya investigación se ha desarrollado en el Grupo de Diseño Electrónico y Microelectrónico (GDEM) en el marco del proyecto PccMuTe, se centra en el desarrollo de un modelo de estimación de energía para un sistema empotrado alimentado por batería. Los objetivos principales y las contribuciones de esta tesis se resumen como sigue: Se propone un modelo para obtener estimaciones precisas del consumo de energía de un sistema empotrado. El modelo se basa en la correlación lineal entre los valores de los contadores de prestaciones y el consumo de energía. Considerando la particularidad de los contadores de prestaciones en cada sistema, la metodología de modelado se ha mejorado para obtener precisiones estables, con ligeras variaciones entre escenarios múltiples y para replicar los resultados en diferentes sistemas. La metodología incluye dos etapas: la primera, filtrado-PMC, que consiste en identificar el conjunto más apropiado de contadores de prestaciones de entre los disponibles en un sistema y la segunda, el método de validación cruzada de K iteraciones, cuyo fin es evitar los sesgos durante la fase de entrenamiento. La metodología se implementa en un sistema empotrado que ejecuta el kernel 2.6.34 de Linux y PAPI, un interfaz multiplataforma para configurar y acceder a los contadores. Los resultados muestran que esta metodología consigue una buena estabilidad en diferentes escenarios y proporciona unos resultados robustos de estimación con un error medio relativo inferior al 5%.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
Our intention in this note is not to provide a listing of the many features of the Ciao system: this can be found in part for example in the brochures announcing upcoming versions, in the Ciao website, or in more feature-oriented descriptions such as. Instead in this document we would like to describe the objectives and reasoning followed in our design as well as the fundamental characteristics that in our opinion make Ciao quite unique and hopefully really useful to you as a Ciao user.
Resumo:
Systems integration is the origin of most major difficulties found in the engineering design of aeronautical vehicles. The whole design team must assure that each subsystem accomplishes its particular goals and that, together with the rest of the systems, they all meet the general aircraft requirements.Design and building of UAS is a field of actuation to which leading Universities, research Centers and Aeronautical designers have dedicated a lot of effort. In recent years, a team of students, lecturers and professors at the Escuela Universitaria de Ingeniería Técnica Aeronáutica (EUITA) have been working on the design and building of a UAS for civil observation. The design of multi-mission Unmanned Aerial Vehicles (UAVs) has seen a rapid progress in the last years. A wide variety of designs and applications, some of them really ingenious, have been proposed. The project, which has been going on as a teamwork experience for the last ten years, consists of the design and building of a UAV, and its peculiarity is that it has been carried out entirely by undergraduate students, as part of their Final Research Project. The students face a challenge that includes all the features and stages of an authentic engineering project. We present the current moment of evolution in the process, together with a description of the main difficulties the project has undergone, as a global experience in engineering design and development.
Resumo:
onceptual design phase is partially supported by product lifecycle management/computer-aided design (PLM/CAD) systems causing discontinuity of the design information flow: customer needs — functional requirements — key characteristics — design parameters (DPs) — geometric DPs. Aiming to address this issue, it is proposed a knowledge-based approach is proposed to integrate quality function deployment, failure mode and effects analysis, and axiomatic design into a commercial PLM/CAD system. A case study, main subject of this article, was carried out to validate the proposed process, to evaluate, by a pilot development, how the commercial PLM/CAD modules and application programming interface could support the information flow, and based on the pilot scheme results to propose a full development framework.