52 resultados para Unmanned aerial system
Resumo:
The objective of this study was to verify the effectiveness of new patterns of sowing and to achieve a low-input organic system in two different environments (northern and southern Europe). The study was motivated by the hypothesis that more even sowing patterns (triangular and square) would significantly enhance the growth and yield of forage maize under widely varying conditions, compared with traditional mechanised rectangular seed patterns. An experiment was conducted in Madrid and duplicated in Copenhagen during 2010. A random block design was used with a 2 × 2 factorial arrangement based on two seed-sowing patterns: traditional (rectangular) and new (even) and two weed-management conditions (herbicide use and a low-input system). In both weed-management conditions and locations, the production of aerial maize biomass was greater for the new square seed patterns. In addition, the new pattern showed a greater effectiveness in the control of weeds, both at the initial crop stages (36 and 33% fewer weeds m-2 at the 4- and 8-leaf stages, respectively, in the Copenhagen field experiment) and at the final stage. The final weed biomass for the new pattern was 568 kg ha-1 lower for the Copenhagen experiment and 277 kg ha-1 lower in Madrid field experiments. In the light of these results, the new pattern could potentially reduce the use of herbicides. The results of the experiments support the hypothesis formulated at the beginning of this study that even-sowing patterns would be relatively favourable for the growth and yield of the maize crop. In the near future, new machinery could be used to achieve new seed patterns for the optimisation of biomass yield under low-input systems. This approach is effective because it promotes natural crop-weed competition.
Resumo:
Sensing systems in living bodies offer a large variety of possible different configurations and philosophies able to be emulated in artificial sensing systems. Motion detection is one of the areas where different animals adopt different solutions and, in most of the cases, these solutions reflect a very sophisticated form. One of them, the mammalian visual system, presents several advantages with respect to the artificial ones. The main objective of this paper is to present a system, based on this biological structure, able to detect motion, its sense and its characteristics. The configuration adopted responds to the internal structure of the mammalian retina, where just five types of cells arranged in five layers are able to differentiate a large number of characteristics of the image impinging onto it. Its main advantage is that the detection of these properties is based purely on its hardware. A simple unit, based in a previous optical logic cell employed in optical computing, is the basis for emulating the different behaviors of the biological neurons. No software is present and, in this way, no possible interference from outside affects to the final behavior. This type of structure is able to work, once the internal configuration is implemented, without any further attention. Different possibilities are present in the architecture to be presented: detection of motion, of its direction and intensity. Moreover, some other characteristics, as symmetry may be obtained.
Resumo:
Autonomous aerial refueling is a key enabling technology for both manned and unmanned aircraft where extended flight duration or range are required. The results presented within this paper offer one potential vision-based sensing solution, together with a unique test environment. A hierarchical visual tracking algorithm based on direct methods is proposed and developed for the purposes of tracking a drogue during the capture stage of autonomous aerial refueling, and of estimating its 3D position. Intended to be applied in real time to a video stream from a single monocular camera mounted on the receiver aircraft, the algorithm is shown to be highly robust, and capable of tracking large, rapid drogue motions within the frame of reference. The proposed strategy has been tested using a complex robotic testbed and with actual flight hardware consisting of a full size probe and drogue. Results show that the vision tracking algorithm can detect and track the drogue at real-time frame rates of more than thirty frames per second, obtaining a robust position estimation even with strong motions and multiple occlusions of the drogue.
Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System
Resumo:
Flash floods represent one of the most common natural hazards in mountain catchments, and are frequent in Mediterranean environments. As a result of the widespread lack of reliable data on past events, the understanding of their spatio-temporal occurrence and their climatic triggers remains rather limited. Here, we present a dendrogeomorphic reconstruction of past flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama, Spanish Central System). We analyze a total of 287 increment cores from 178 disturbed Scots pine trees (Pinus sylvestris L.) which yielded indications on 212 growth disturbances related to past flash flood impact. In combination with local archives, meteorological data, annual forest management records and highly-resolved terrestrial data (i.e., LiDAR data and aerial imagery), the dendrogeomorphic time series allowed dating 25 flash floods over the last three centuries, with a major event leaving an intense geomorphic footprint throughout the catchment in 1936. The analysis of meteorological records suggests that the rainfall thresholds of flash floods vary with the seasonality of events. Dated flash floods in the 20th century were primarily related with synoptic troughs owing to the arrival of air masses from north and west on the Iberian Peninsula during negative indices of the North Atlantic Oscillation. The results of this study contribute considerably to a better understanding of hazards related with hydrogeomorphic processes in central Spain in general and in the Sierra de Guadarrama National Park in particular.
Resumo:
La robótica ha evolucionado exponencialmente en las últimas décadas, permitiendo a los sistemas actuales realizar tareas sumamente complejas con gran precisión, fiabilidad y velocidad. Sin embargo, este desarrollo ha estado asociado a un mayor grado de especialización y particularización de las tecnologías implicadas, siendo estas muy eficientes en situaciones concretas y controladas, pero incapaces en entornos cambiantes, dinámicos y desestructurados. Por eso, el desarrollo de la robótica debe pasar por dotar a los sistemas de capacidad de adaptación a las circunstancias, de entendedimiento sobre los cambios observados y de flexibilidad a la hora de interactuar con el entorno. Estas son las caracteristicas propias de la interacción del ser humano con su entorno, las que le permiten sobrevivir y las que pueden proporcionar a un sistema inteligencia y capacidad suficientes para desenvolverse en un entorno real de forma autónoma e independiente. Esta adaptabilidad es especialmente importante en el manejo de riesgos e incetidumbres, puesto que es el mecanismo que permite contextualizar y evaluar las amenazas para proporcionar una respuesta adecuada. Así, por ejemplo, cuando una persona se mueve e interactua con su entorno, no evalúa los obstáculos en función de su posición, velocidad o dinámica (como hacen los sistemas robóticos tradicionales), sino mediante la estimación del riesgo potencial que estos elementos suponen para la persona. Esta evaluación se consigue combinando dos procesos psicofísicos del ser humano: por un lado, la percepción humana analiza los elementos relevantes del entorno, tratando de entender su naturaleza a partir de patrones de comportamiento, propiedades asociadas u otros rasgos distintivos. Por otro lado, como segundo nivel de evaluación, el entendimiento de esta naturaleza permite al ser humano conocer/estimar la relación de los elementos con él mismo, así como sus implicaciones en cuanto a nivel de riesgo se refiere. El establecimiento de estas relaciones semánticas -llamado cognición- es la única forma de definir el nivel de riesgo de manera absoluta y de generar una respuesta adecuada al mismo. No necesariamente proporcional, sino coherente con el riesgo al que se enfrenta. La investigación que presenta esta tesis describe el trabajo realizado para trasladar esta metodología de análisis y funcionamiento a la robótica. Este se ha centrado especialmente en la nevegación de los robots aéreos, diseñando e implementado procedimientos de inspiración humana para garantizar la seguridad de la misma. Para ello se han estudiado y evaluado los mecanismos de percepción, cognición y reacción humanas en relación al manejo de riesgos. También se ha analizado como los estímulos son capturados, procesados y transformados por condicionantes psicológicos, sociológicos y antropológicos de los seres humanos. Finalmente, también se ha analizado como estos factores motivan y descandenan las reacciones humanas frente a los peligros. Como resultado de este estudio, todos estos procesos, comportamientos y condicionantes de la conducta humana se han reproducido en un framework que se ha estructurado basadandose en factores análogos. Este emplea el conocimiento obtenido experimentalmente en forma de algoritmos, técnicas y estrategias, emulando el comportamiento humano en las mismas circunstancias. Diseñado, implementeado y validado tanto en simulación como con datos reales, este framework propone una manera innovadora -tanto en metodología como en procedimiento- de entender y reaccionar frente a las amenazas potenciales de una misión robótica. ABSTRACT Robotics has undergone a great revolution in the last decades. Nowadays this technology is able to perform really complex tasks with a high degree of accuracy and speed, however this is only true in precisely defined situations with fully controlled variables. Since the real world is dynamic, changing and unstructured, flexible and non context-dependent systems are required. The ability to understand situations, acknowledge changes and balance reactions is required by robots to successfully interact with their surroundings in a fully autonomous fashion. In fact, it is those very processes that define human interactions with the environment. Social relationships, driving or risk/incertitude management... in all these activities and systems, context understanding and adaptability are what allow human beings to survive: contrarily to the traditional robotics, people do not evaluate obstacles according to their position but according to the potential risk their presence imply. In this sense, human perception looks for information which goes beyond location, speed and dynamics (the usual data used in traditional obstacle avoidance systems). Specific features in the behaviour of a particular element allows the understanding of that element’s nature and therefore the comprehension of the risk posed by it. This process defines the second main difference between traditional obstacle avoidance systems and human behaviour: the ability to understand a situation/scenario allows to get to know the implications of the elements and their relationship with the observer. Establishing these semantic relationships -named cognition- is the only way to estimate the actual danger level of an element. Furthermore, only the application of this knowledge allows the generation of coherent, suitable and adjusted responses to deal with any risk faced. The research presented in this thesis summarizes the work done towards translating these human cognitive/reasoning procedures to the field of robotics. More specifically, the work done has been focused on employing human-based methodologies to enable aerial robots to navigate safely. To this effect, human perception, cognition and reaction processes concerning risk management have been experimentally studied; as well as the acquisition and processing of stimuli. How psychological, sociological and anthropological factors modify, balance and give shape to those stimuli has been researched. And finally, the way in which these factors motivate the human behaviour according to different mindsets and priorities has been established. This associative workflow has been reproduced by establishing an equivalent structure and defining similar factors and sources. Besides, all the knowledge obtained experimentally has been applied in the form of algorithms, techniques and strategies which emulate the analogous human behaviours. As a result, a framework capable of understanding and reacting in response to stimuli has been implemented and validated.
Resumo:
In this paper, we consider the problem of autonomous navigation of multirotor platforms in GPS-denied environments. The focus of this work is on safe navigation based on unperfect odometry measurements, such as on-board optical flow measurements. The multirotor platform is modeled as a flying object with specific kinematic constraints that must be taken into account in order to obtain successful results. A navigation controller is proposed featuring a set of configurable parameters that allow, for instance, to have a configuration setup for fast trajectory following, and another to soften the control laws and make the vehicle navigation more precise and slow whenever necessary. The proposed controller has been successfully implemented in two different multirotor platforms with similar sensoring capabilities showing the openness and tolerance of the approach. This research is focused around the Computer Vision Group's objective of applying multirotor vehicles to civilian service applications. The presented work was implemented to compete in the International Micro Air Vehicle Conference and Flight Competition IMAV 2012, gaining two awards: the Special Award on "Best Automatic Performance - IMAV 2012" and the second overall prize in the participating category "Indoor Flight Dynamics - Rotary Wing MAV". Most of the code related to the present work is available as two open-source projects hosted in GitHub.
Resumo:
En esta tesis se presenta el desarrollo de un esquema de cooperación entre vehículos terrestres (UGV) y aéreos (UAV) no tripulados, que sirve de base para conformar dos flotas de robots autónomos (denominadas FRACTAL y RoMA). Con el fin de comprobar, en diferentes escenarios y con diferente tareas, la validez de las estrategias de coordinación y cooperación propuestas en la tesis se utilizan los robots de la flota FRACTAL, que sirven como plataforma de prueba para tareas como el uso de vehículos aéreos y terrestres para apoyar labores de búsqueda y rescate en zonas de emergencia y la cooperación de una flota de robots para labores agrícolas. Se demuestra además, que el uso de la técnica de control no lineal conocida como Control por Modos Deslizantes puede ser aplicada no solo para conseguir la navegación autónoma individual de un robot aéreo o terrestre, sino también en tareas que requieren la navegación coordinada y sin colisiones de varios robots en un ambiente compartido. Para esto, se conceptualiza teóricamente el uso de la técnica de Control por Modos Deslizantes como estrategia de coordinación entre robots, extendiendo su aplicación a robots no-holonómicos en R2 y a robots aéreos en el espacio tridimensional. Después de dicha contextualización teórica, se analizan las condiciones necesarias para determinar la estabilidad del sistema multi-robot controlado y, finalmente, se comprueban las características de estabilidad y robustez ofrecidas por esta técnica de control. Tales comprobaciones se hacen simulando la navegación segura y eficiente de un grupo de UGVs para la detección de posibles riesgos ambientales, aprovechando la información aportada por un UAV. Para estas simulaciones se utilizan los modelos matemáticos de robots de la flota RoMA. Estas tareas coordinadas entre los robots se hacen posibles gracias a la efectividad, estabilidad y robustez de las estrategias de control que se desarrollan como núcleo fundamental de este trabajo de investigación. ABSTRACT This thesis presents the development of a cooperation scheme between unmanned ground (UGV) and aerial (UAV) vehicles. This scheme is the basis for forming two fleets of autonomous robots (called FRACTAL and RoMA). In order to assess, in different settings and on different tasks, the validity of the coordination and cooperation strategies proposed in the thesis, the FRACTAL fleet robots serves as a test bed for tasks like using coordinated aerial and ground vehicles to support search and rescue work in emergency scenarios or cooperation of a fleet of robots for agriculture. It is also shown that using the technique of nonlinear control known as Sliding Modes Control (SMC) can be applied not only for individual autonomous navigation of an aircraft or land robot, but also in tasks requiring the coordinated navigation of several robots, without collisions, in a shared environment. To this purpose, a strategy of coordination between robots using Sliding Mode Control technique is theoretically conceptualized, extending its application to non-holonomic robots in R2 and aerial robots in three-dimensional space. After this theoretical contextualization, the stability conditions of multi-robot system are analyzed, and finally, the stability and robustness characteristics are validated. Such validations are made with simulated experiments about the safe and efficient navigation of a group of UGV for the detection of possible environmental hazards, taking advantage of the information provided by a UAV. This simulations are made using mathematical models of RoMA fleet robots. These coordinated tasks of robots fleet are made possible thanks to the effectiveness, stability and robustness of the control strategies developed as core of this research.