62 resultados para Scour at bridges.
Resumo:
The installation of offshore scour protection systems in offshore wind farms allows avoid the effect of scour phenomenon around these structures. Up to date, numerous research projects have been carried out to justify the necessity of the scour protection systems and also to optimize their design. Protection systems based on riprap is frequently used due to its low cost and easy availability compared to other solutions such as geotextile bags or prefabricated concrete blocks. The sizing of these structures can be performed according to a series of recommendations that can optimize the costs associated with them, but there have been only few studies with real data up to now which have allowed identify the need for such protections. This investigation aims to assess the functionality of the scour protections adopted through the available data about their characteristics and the scour depth developed around the foundations. In this sense, this paper presents the results of a study that analyzes the functionality of scour protections in different European offshore wind farms.
Resumo:
Underspanned suspension bridges are structures with important economical and aesthetic advantages, due to their high structural efficiency. However, road bridges of this typology are still uncommon because of limited knowledge about this structural system. In particular, there remains some uncertainty over the dynamic behaviour of these bridges, due to their extreme lightness. The vibrations produced by vehicles crossing the viaduct are one of the main concerns. In this work, traffic-induced dynamic effects on this kind of viaduct are addressed by means of vehicle-bridge dynamic interaction models. A finite element method is used for the structure, and multibody dynamic models for the vehicles, while interaction is represented by means of the penalty method. Road roughness is included in this model in such a way that the fact that profiles under left and right tyres are different, but not independent, is taken into account. In addition, free software {PRPgenerator) to generate these profiles is presented in this paper. The structural dynamic sensitivity of underspanned suspension bridges was found to be considerable, as well as the dynamic amplification factors and deck accelerations. It was also found that vehicle speed has a relevant influence on the results. In addition, the impact of bridge deformation on vehicle vibration was addressed, and the effect on the comfort of vehicle users was shown to be negligible.
Resumo:
The analysis of the running safety of railway vehicles on viaducts subject to strong lateral actions such as cross winds requires coupled nonlinear vehicle-bridge interaction models, capable to study extreme events. In this paper original models developed by the authors are described, based on finite elements for the structure, multibody and finite element models for the vehicle, and specially developed interaction elements for the interface between wheel and rail. The models have been implemented within ABAQUS and have full nonlinear capabilities for the structure, the vehicle and the contact interface. An application is developed for the Ulla Viaduct, a 105 m tall arch in the Spanish high-speed railway network. The dynamic analyses allow obtaining critical wind curves, which define the running safety conditions for a given train in terms of speed of circulation and wind speed
Minimum volume stability limits for axisymmetric liquid bridges subject to steady axial acceleration
Resumo:
In this paper the influence of an axial microgravity on the minimum volume stability limit of axisymmetric liquid bridges between unequal disks is analyzed both theoretically and experimentally. The results here presented extend the knowledge of the static behaviour of liquid bridges to fluid configurations different from those studied up to now (almost equal disks). Experimental results, obtained by simulating microgravity conditions by the neutral buoyancy technique, are also presented and are shown to be in complete agreement with theoretical ones.
Resumo:
This paper deals with the stability limits of minimum volume and the breaking of axisymmetric liquid columns held by capillary forces between two concentric,circular solid disk of different radii. The problem has been analyzed both theoreti-cally and experimentally. A theoretical analysis concerning the breaking of liquid bridges has been performed by using a one-dimensional slice model already used in liquid bridge problems. Experiments have been carried out by using milli-metric liquid bridges, and minimum volume stability limits as well as the volumes of the drops resulting after breaking have been measured for a large number of liquid bridge configurations. Experimental results being in agreement with theoretical prediction.
Resumo:
This paper deals with the non-linear forced oscillations of axisymmetric long liquid bridges between equal disks. The dynamics of the liquid bridge has been analyzed by using a self-similar, one-dimensional model already used in similar problems. The influence of the dynamics on the static stability limits, as well as the main characteristics of the non-linear behaviour of long liquid bridges, have been studied with in the range of validity of the mathematical model used here.
Resumo:
In this paper experimental results related to both stability an the dynamic of a asiximmetric liquid bridge between unequal disk are presented. Experiments have been performed by using a drop tower facility and the response of the liquid bridge to a sudden change of the acceleration level acting on it has bee obtained.
Resumo:
The shape of the interface of a drop of liquid held by surface tension forces between two solid disks,a liquid bridge, depends on the geometry of the supporting disks, the volume of liquid and the external forces acting on the drop. Therefore, once the geometry of the supporting disks and the volume of liquid are fixed, and assuming that the value of the surface tension is known, a way to measure such external forces could be by measuring the deformation of the liquid bridge interface.
Resumo:
There is a self-similar solution for the stability limits of long, almost cylindrical liquid bridges between equal disks subjected to both axial and lateral accelerations. The stability limits depend on only two variables; the so-called reduced axial, and lateral Bond numbers. A novel experimental setup that involved rotating a horizontal cylindrical liquid bridge about a vertical axis of rotation was designed to test the stability limits predicted by the self-similar solution. Analytical predictions compared well with both numerical and experimental results.
Resumo:
An experimental apparatus to study the breaking process of axisymmetric liquid bridges has been developed, and the breaking sequences of a large number of liquid bridge configurations at minimum-volume stability limit have been analyzed. Experimental results show that very close to the breaking moment the neck radius of the liquid bridge varies as t1/3, where t is the time to breakage, irrespective of the value of the distance between the solid disks that support the liquid column.
Resumo:
A numerical method has been developed to determine the stability limits for liquid bridges held between noncircular supporting disks and the application to a configuration with a circular and an elliptical disk subjected to axial acceleration has been made. The numerical method led to results very different from the available analytical solution which has been revisited and a better approximation has been obtained. It has been found that just retaining one more term in the asymptotic analysis the solution reproduces the real behavior of the configuration and the numerical results.
Resumo:
Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.
Resumo:
El presente trabajo de investigación se ocupa del estudio de las vibraciones verticales inducidas por vórtices (VIV) en aquellos puentes que, por sus características geométricas y propiedades dinámicas, muestran cierta sensibilidad este tipo de fenómeno aeroelástico. El objeto principal es el análisis del mecanismo de interacción viento-estructura sobre secciones no fuseladas de geometría simple, con objeto de realizar una adecuada caracterización del problema y poder abordar posteriormente el análisis de otras secciones de geometría más compleja, representativas de los principales elementos estructurales de los puentes, como arcos, tableros, torres y pilas. Este aspecto es fundamental durante la fase de diseño del puente, donde deberán tenerse en cuenta también una serie de detalles que pueden influir significativamente su sensibilidad ante problemas aerodinámicos, como la morfología y dimensiones principales de la sección transversal del tablero, la disposición de barreras de seguridad y barreras cortaviento, o las riostras que unen diferentes elementos estructurales. La configuración de dos elementos en tándem o la construcción de un puente en las inmediaciones de otro existente son otros aspectos a considerar respecto a la sensibilidad frente a efectos aeroelásticos. El estudio se ha llevado a cabo principalmente mediante la implementación de simulaciones numéricas que reproducen la interacción entre la corriente de aire y secciones representativas de modelos estructurales, a partir de un código CFD basado en el método de las partículas de vórtices (VPM), siguiendo por tanto un esquema Lagrangiano. Los resultados han sido validados con datos experimentales existentes, valores procedentes de ensayos en túnel de viento y registros reales a partir de diferentes casos de estudio: Alconétar (2006), Niterói (1980), Trans- Tokyo Bay (1995) y Volgogrado (2010). Finalmente, se propone un modelo semi-empírico para la estimación del rango de velocidades críticas y amplitudes de oscilación basado en la utilización de las derivadas de flameo de Scanlan, y la densidad espectral de las fuerzas aerodinámicas en el dominio de la frecuencia. The present research work concerns the study of vertical vortex-induced vibrations (VIV) in bridges which show certain sensitivity to this type of aeroelastic phenomenon. It focuses on the analysis of the wind-structure interaction mechanism on bluff sections, with the objective of making a good characterisation of the problem and subsequently addressing the analysis of sections with a complex geometry, which are representative of the bridge structural elements, such as arches, decks, towers and piers. This issue is of relative importance during the bridge design phase, since minor details of the aforementioned elements can significantly influence its sensitivity to aerodynamic problems. The shape and main dimensions of the deck cross section, the addition of safety barriers and windshields, the presence of braces to enhance the structure mechanical properties, the utilisation of cross sections in tandem arrangement, or the erection of a new bridge in the vicinity of another existing one are some of the aspects to be considered regarding the sensitivity to the aeroelastic effects. The study has been carried out mainly through the implementation of numerical simulations that reproduces the interaction between the airflow and the representative cross section of a structural bridge model, by the use of a CFD code based on the vortex particle method (VPM), thus following a Lagrangian scheme. The results have been validated with existing experimental data, values from wind tunnel tests and full scale observations from the different case studies: Alconétar (2006), Niterói (1980), Trans-Tokyo Bay (1995) and Volgograd (2010). Finally, a new semi-empirical model is proposed for the estimation of the critical wind velocity ranges and oscillation amplitudes based on the use of the Scanlan’s flutter derivatives and the power spectral density of aerodynamic force time history in the frequency domain.
Resumo:
Large free liquid volumes, 30 mm in diameter and 80 mm long, anchored to coaxial discs, have been achieved during a sounding-rocket flight. As these flights provide some six minutes of microgravity and the formation of the liquid column takes only a matter of seconds, ample time is left for experimentation. The results of these trials are presented, and the equipment used to obtain them is briefly described.
Resumo:
The main effects on the dynamics of a liquid bridge due to the presence of an outer liquid, as occur in experiments using the Plateau-tank technique, are considered. The one-dimensional nonlinear model developed here allows us to perform the computation of both breaking processes and oscillatory motions of slender liquid bridges, although in this paper only the results concerning breaking processes are reported. Additionally,the oscillatory motions are studied both experimentally and by using a new linear model. Results from both sources show good agreement