47 resultados para Residuos sólidos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La gasificación de lodos de depuración consiste en la conversión termoquímica del lodo por oxidación parcial a alta temperatura mediante un agente gasificante, que generalmente es aire, oxígeno o vapor de agua. Se trata de una tecnología de gran interés, ya que consigue reducir la masa de estos residuos y permite el aprovechamiento de los gases formados, tanto en la generación de energía térmica y/o eléctrica como en la síntesis de productos químicos orgánicos y combustibles líquidos. Debido a la complejidad de este proceso, es útil el uso de modelos que faciliten su estudio de forma fiable y a bajo coste. El presente Proyecto Fin de Carrera se centra en el diseño de un modelo adimensional de equilibrio en estado estacionario basado en la minimización de la energía libre de Gibbs. Para ello, se ha empleado el software de simulación de procesos Aspen Plus, que posee una amplia base de datos de propiedades físicas y permite gran flexibilidad en el manejo de sólidos. Para la elaboración del modelo se han asumido las hipótesis de mezcla perfecta dentro del reactor y operación isoterma. El gasificador se ha considerado de lecho fluidizado burbujeante, al permitir un buen control de la temperatura y una alta transferencia de materia y energía entre el sólido y el agente gasificante. El modelo desarrollado consta de cuatro etapas. La primera reproduce el proceso de pirólisis o descomposición térmica de los componentes del lodo en ausencia de agente gasificante. En la segunda etapa se simula que todo el nitrógeno y el azufre contenidos en el lodo se transforman en amoniaco y ácido sulfhídrico, respectivamente. En la tercera etapa se produce la gasificación en dos reactores. El primer gasificador alcanza el equilibrio químico mediante la minimización de la energía libre de Gibbs del sistema. En el segundo reactor se establece un equilibrio restringido por medio de la especificación de una aproximación de temperatura para cada reacción. Este método permite validar los resultados del modelo con datos reales. En la última etapa se separa el residuo carbonoso o char (compuesto por carbono y cenizas) del gas de salida, formado por N2, H2, CO, CO2, CH4 (supuesto como único hidrocarburo presente), NH3, H2S y H2O. Este gas debe ser depurado mediante equipos de limpieza aguas abajo. Los resultados de la simulación del modelo han sido validados frente a los valores obtenidos en ensayos previos llevados a cabo en la planta de gasificación a escala de laboratorio ubicada en el Departamento de Ingeniería Química Industrial y del Medio Ambiente de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Estos resultados han mostrado muy buena concordancia con los obtenidos experimentalmente, con un error inferior al 7% en todos los parámetros analizados en el caso de gasificación con aire y menor al 13% cuando se utiliza una mezcla aire/vapor de agua como agente gasificante. Se ha realizado un análisis de sensibilidad con el fin de estudiar la influencia de las condiciones de operación (temperatura, ratio equivalente y ratio vapor/biomasa) sobre los resultados del proceso modelado (composición, producción y poder calorífico inferior de los gases, conversión de carbono y eficiencia de la gasificación). Para ello, se han llevado a cabo diferentes simulaciones modificando la temperatura de gasificación entre 750ºC y 850ºC, el ratio equivalente (ER) entre 0,2 y 0,4 y el ratio vapor/biomasa (S/B) entre 0 y 1. Como ya ocurriera con la validación del modelo, los resultados de las simulaciones bajo las distintas condiciones de gasificación se ajustan de forma satisfactoria a los valores experimentales. Se ha encontrado que un aumento en la temperatura mejora la cantidad y la calidad del gas producido y, por tanto, la eficiencia del proceso. Un incremento del ratio equivalente reduce la concentración de CO y H2 en el gas y, en consecuencia, también su poder calorífico. Sin embargo, valores bajos del ratio equivalente disminuyen la producción de gases y la conversión de carbono. La alimentación de vapor de agua en el sistema mejora todos los parámetros analizados. Por tanto, dentro del rango estudiado, las condiciones de operación que optimizan el proceso de gasificación de lodos consisten en el empleo de mezclas aire/vapor de agua como agente gasificante, una temperatura de 850ºC y un ER de 0,3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la actualidad caminar hacia el residuo cero es la máxima de toda política medioambiental. Cada año se producen millones de toneladas de residuos solamente en la Unión Europea, entre los que se encuentran los residuos de vidrio y esta cifra no deja de aumentar. El almacenamiento de estos residuos no es una solución sostenible y su destrucción no resulta satisfactoria debido a que los desechos que se producen como derivados de dichos residuos son muy concentrados y contaminantes. La mejor solución sigue consistiendo en minimizar la producción de residuos y en reintroducirlos en el ciclo de producción mediante el reciclado de sus componentes cuando existan soluciones sostenibles desde los puntos de vista ecológico y económico. El objetivo de esta tesis doctoral es analizar la posibilidad de utilización de los desechos últimos de polvo de vidrio provenientes de la industria vidriera y cerámica, que se destinan a vertedero controlado, como conglomerante en el campo de la ingeniería civil. Se han realizado estudios físicos, mecánicos y químicos para la caracterización y sostenibilidad de hormigones desactivados cuyo conglomerante sea los residuos últimos de polvo de vidrio. Dichos estudios han permitido evidenciar los factores que influyen en la reactividad de estos materiales. Después de la molienda con diferentes granulometrías de los residuos de polvo de vidrio se ha estudiado su papel en el crecimiento de las resistencias mecánicas a largo plazo de los morteros y los hormigones, dando como resultado que dichas resistencias son mayores cuanto más finos son los polvos de vidrio utilizados. El fraguado que proporciona el vidrio se debe a la formación de geles tipo C-S-H, ricos en Si, Ca y Na (los 3 principales elementos constitutivos del vidrio). La disolución de estos elementos y sus asociaciones después de su precipitación es lo que provoca la aparición de estos geles. El cierre progresivo de la estructura de estos productos, que se traduce en una colmatación de los poros, nos permite explicar el crecimiento de las resistencias mecánicas. La utilización de estos productos de desecho del vidrio como conglomerante conlleva beneficios medioambientales, como son, la minimización de los residuos en vertedero y uso en morteros y hormigones no provocan un impacto perjudicial sobre la naturaleza, ya que solamente el Na es liberado en cantidad apreciable, lo que pone en evidencia su sostenibilidad medioambiental. Una vez caracterizados estos materiales se analizan sus distintas aplicaciones, sobre todo su uso como componente mayoritario de conglomerante (entre un 70 y un 80%) destinado a la fabricación de hormigones desactivados. Los áridos de estos hormigones se hacen visible de dos formas: la primera desactivando el fraguado superficial extendiendo un producto desactivante que después se elimina con un chorro de agua, la segunda mediante un barrido enérgico con una escoba de pelo duro. La utilización de estos desechos de vidrio abre, igualmente, perspectivas interesantes en el sector de los firmes de carreteras, de los morteros o del tratamiento de suelos finos que para concretar implicaría ensayos complementarios en cada uno de estos sectores que pueden ser objeto de la ejecución de otras tesis doctorales. Lo mismo que se abre el estudio sobre el origen de las propiedades conglomerantes del vidrio, de los escalones de concentración en Si y Na tras la disolución de los polvos de vidrio y de la desecación del interior de las probetas de morteros. Dentro de la tesis, se ha desarrollado un modelo matemático basados en A.C.(Autómatas Celulares) para la predicción del comportamiento mecánico a compresión de estos morteros fabricados con polvo de vidrio, donde, como ha quedado establecido, lo más importante en la formación de la microestructura del cemento es su proceso de hidratación, proceso mediante el cual, la pasta va tomando consistencia a medida que transcurre el tiempo y se van combinando las diferentes especies de reacción para formar una estructura que gana en complejidad y resistencia, estando en correlación los obtenidos en el modelo con los obtenidos en los trabajos de laboratorio.