48 resultados para Reactores Catalíticos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El tratamiento superficial por ondas de choque generadas por láser, LSP, es una técnica cuyo principal objetivo es el de la modificación del estado tensional de las primeras micras en profundidad de materiales metálicos. En sus comienzos está técnica fue empleada para inducir tensiones residuales de compresión en superficie, pero mientras se avanzaba en su desarrollo se empezaron a observar otros efectos. Profundizando en ellos se llega a la conclusión de que existe una fuerte relación entre todos, pero dependiendo de la aplicación a la que se vea sometido un componente tratado con LSP será necesario una serie de características que bien pueden ser ajustadas “a priori”. Para ello se ha de tener una buena caracterización del proceso láser y de las modificaciones que produce en las propiedades de un material determinado. Y es en este punto donde surge el problema: las modificaciones introducidas por el tratamiento láser son dependientes de la interacción de la energía del pulso láser con el material, es decir, para cada material es necesaria una caracterización previa de cómo sus propiedades son modificadas con las diferentes configuraciones del tratamiento LSP, encontrando para cada material un óptimo en los parámetros láser. En esta Tesis se pretende desarrollar una metodología para evaluar las modificaciones en las propiedades mecánicas y superficiales inducidas en materiales metálicos debido al tratamiento superficial por ondas de choque. De esta manera y avanzando de una manera lógica con la línea de investigación del grupo, se ha querido aplicar todo el conocimiento adquirido de la técnica para desarrollar esa metodología sobre un caso práctico: el empleo de dos configuraciones de tratamiento LSP sobre el acero inoxidable AISI 316L. Estas dos configuraciones elegidas se hacen en base a estudios previos, por parte del grupo de investigación, donde se han optimizados los parámetros para obtener el óptimo en lo que a perfil de tensiones residuales en profundidad se refiere. El material elegido como caso característico para llevar acabo la evaluación integrada del tratamiento LSP, de acuerdo con el propósito de esta Tesis, ha sido el acero inoxidable AISI 316L, debido a que este tipo de acero tiene una excelente resistencia a la corrosión en un amplio rango de atmosferas corrosivas, y es conocido como el grado estándar para un importante número de aplicaciones tecnológicas. La resistencia a la oxidación es buena incluso a altas temperaturas de servicio y la soldabilidad es excelente. Los aceros austeníticos son empleados en aplicaciones que soportan condiciones de alta temperatura y medios altamente corrosivos, como en reactores nucleares. Estos aceros resisten la corrosión en el agua de un reactor y procesos químicos en plantas que operan a temperaturas superiores a los 900 ˚C. En concreto el acero 316L se utiliza en la industria de equipamiento alimentario, en ambientes donde haya presencia de cloruros, en aplicaciones farmacéuticas, en la industria naval, en arquitectura, sector energético, centrales nucleares y en implantes médicos. Es decir, es un material ampliamente implantado en la industria, tanto en industrias tradicionales, como en industrias emergentes como la biomédica. El objetivo marcado para el desarrollo de la presente Tesis es caracterizar de forma precisa cómo el tratamiento superficial por ondas de choque generadas por láser es capaz de mejorar las propiedades de los materiales y cómo de estables son estas con la temperatura. Este punto es importante puesto que a la hora de introducir el proceso LSP en la industria no solo se tiene que tener en cuenta que las propiedades del material sean mejoradas, sino que también es necesario comprobar si esas mejoras se mantienen después de ser sometido el material a un tratamiento térmico ya que las condiciones de servicio de los materiales y componentes empleados no tienen por qué trabajar a temperatura ambiente. Para lograr el objetivo mencionado, el trabajo experimental realizado en la aleación seleccionada bajo todas las condiciones a estudio (material según fue recibido de fábrica, tratado con las dos configuraciones LSP y después de haber sido sometido al tratamiento térmico) ha consistido en lo siguiente: i) Estudios microestructural, morfológico y de composición química. ii) Medida de las tensiones residuales introducidas. iii) Caracterización superficial del material. iv) Estudio de las propiedades mecánicas: ensayos de tracción, ensayos de dureza, cálculo de la densidad de dislocaciones y ensayos de fatiga. v) Caracterización tribológica: ensayos de fricción y cálculo de la tasa de desgaste y volumen eliminado. vi) Caracterización electro-química para el material base y tratado con las dos configuraciones LSP. Se realizan medidas a circuito abierto, curvas de polarización (OCP), ensayos potenciostáticos y espectroscopia de impedancia electroquímica (EIS). El trabajo se ha llevado a cabo en los laboratorios del Centro Láser de la Universidad Politécnica de Madrid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La gasificación de lodos de depuración consiste en la conversión termoquímica del lodo por oxidación parcial a alta temperatura mediante un agente gasificante, que generalmente es aire, oxígeno o vapor de agua. Se trata de una tecnología de gran interés, ya que consigue reducir la masa de estos residuos y permite el aprovechamiento de los gases formados, tanto en la generación de energía térmica y/o eléctrica como en la síntesis de productos químicos orgánicos y combustibles líquidos. Debido a la complejidad de este proceso, es útil el uso de modelos que faciliten su estudio de forma fiable y a bajo coste. El presente Proyecto Fin de Carrera se centra en el diseño de un modelo adimensional de equilibrio en estado estacionario basado en la minimización de la energía libre de Gibbs. Para ello, se ha empleado el software de simulación de procesos Aspen Plus, que posee una amplia base de datos de propiedades físicas y permite gran flexibilidad en el manejo de sólidos. Para la elaboración del modelo se han asumido las hipótesis de mezcla perfecta dentro del reactor y operación isoterma. El gasificador se ha considerado de lecho fluidizado burbujeante, al permitir un buen control de la temperatura y una alta transferencia de materia y energía entre el sólido y el agente gasificante. El modelo desarrollado consta de cuatro etapas. La primera reproduce el proceso de pirólisis o descomposición térmica de los componentes del lodo en ausencia de agente gasificante. En la segunda etapa se simula que todo el nitrógeno y el azufre contenidos en el lodo se transforman en amoniaco y ácido sulfhídrico, respectivamente. En la tercera etapa se produce la gasificación en dos reactores. El primer gasificador alcanza el equilibrio químico mediante la minimización de la energía libre de Gibbs del sistema. En el segundo reactor se establece un equilibrio restringido por medio de la especificación de una aproximación de temperatura para cada reacción. Este método permite validar los resultados del modelo con datos reales. En la última etapa se separa el residuo carbonoso o char (compuesto por carbono y cenizas) del gas de salida, formado por N2, H2, CO, CO2, CH4 (supuesto como único hidrocarburo presente), NH3, H2S y H2O. Este gas debe ser depurado mediante equipos de limpieza aguas abajo. Los resultados de la simulación del modelo han sido validados frente a los valores obtenidos en ensayos previos llevados a cabo en la planta de gasificación a escala de laboratorio ubicada en el Departamento de Ingeniería Química Industrial y del Medio Ambiente de la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Estos resultados han mostrado muy buena concordancia con los obtenidos experimentalmente, con un error inferior al 7% en todos los parámetros analizados en el caso de gasificación con aire y menor al 13% cuando se utiliza una mezcla aire/vapor de agua como agente gasificante. Se ha realizado un análisis de sensibilidad con el fin de estudiar la influencia de las condiciones de operación (temperatura, ratio equivalente y ratio vapor/biomasa) sobre los resultados del proceso modelado (composición, producción y poder calorífico inferior de los gases, conversión de carbono y eficiencia de la gasificación). Para ello, se han llevado a cabo diferentes simulaciones modificando la temperatura de gasificación entre 750ºC y 850ºC, el ratio equivalente (ER) entre 0,2 y 0,4 y el ratio vapor/biomasa (S/B) entre 0 y 1. Como ya ocurriera con la validación del modelo, los resultados de las simulaciones bajo las distintas condiciones de gasificación se ajustan de forma satisfactoria a los valores experimentales. Se ha encontrado que un aumento en la temperatura mejora la cantidad y la calidad del gas producido y, por tanto, la eficiencia del proceso. Un incremento del ratio equivalente reduce la concentración de CO y H2 en el gas y, en consecuencia, también su poder calorífico. Sin embargo, valores bajos del ratio equivalente disminuyen la producción de gases y la conversión de carbono. La alimentación de vapor de agua en el sistema mejora todos los parámetros analizados. Por tanto, dentro del rango estudiado, las condiciones de operación que optimizan el proceso de gasificación de lodos consisten en el empleo de mezclas aire/vapor de agua como agente gasificante, una temperatura de 850ºC y un ER de 0,3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El accidente de pérdida de refrigerante (LOCA) en un reactor nuclear es uno de los accidentes Base de Diseño más preocupantes y estudiados desde el origen del uso de la tecnología de fisión en la industria productora de energía. El LOCA ocupa, desde el punto de vista de los análisis de seguridad, un lugar de vanguardia tanto en el análisis determinista (DSA) como probabilista (PSA), cuya diferenciada perspectiva ha ido evolucionando notablemente en lo que al crédito a la actuación de las salvaguardias y las acciones del operador se refiere. En la presente tesis se aborda el análisis sistemático de de las secuencias de LOCA por pequeña y mediana rotura en diferentes lugares de un reactor nuclear de agua a presión (PWR) con fallo total de Inyección de Seguridad de Alta Presión (HPSI). Tal análisis ha sido desarrollado en base a la metodología de Análisis Integrado de Seguridad (ISA), desarrollado por el Consejo de Seguridad Nuclear (CSN) y consistente en la aplicación de métodos avanzados de simulación y PSA para la obtención de Dominios de Daño, que cuantifican topológicamente las probabilidades de éxito y daño en función de determinados parámetros inciertos. Para la elaboración de la presente tesis, se ha hecho uso del código termohidráulico TRACE v5.0 (patch 2), avalado por la NRC de los EEUU como código de planta para la simulación y análisis de secuencias en reactores de agua ligera (LWR). Los objetivos del trabajo son, principalmente: (1) el análisis exhaustivo de las secuencias de LOCA por pequeña-mediana rotura en diferentes lugares de un PWR de tres lazos de diseño Westinghouse (CN Almaraz), con fallo de HPSI, en función de parámetros de gran importancia para los transitorios, tales como el tamaño de rotura y el tiempo de retraso en la respuesta del operador; (2) la obtención y análisis de los Dominios de Daño para transitorios de LOCA en PWRs, de acuerdo con la metodología ISA; y (3) la revisión de algunos de los resultados genéricos de los análisis de seguridad para secuencias de LOCA en las mencionadas condiciones. Los resultados de la tesis abarcan tres áreas bien diferenciadas a lo largo del trabajo: (a) la fenomenología física de las secuencias objeto de estudio; (b) las conclusiones de los análisis de seguridad practicados a los transitorios de LOCA; y (c) la relevancia de las consecuencias de las acciones humanas por parte del grupo de operación. Estos resultados, a su vez, son de dos tipos fundamentales: (1) de respaldo del conocimiento previo sobre el tipo de secuencias analizado, incluido en la extensa bibliografía examinada; y (2) hallazgos en cada una de las tres áreas mencionadas, no referidos en la bibliografía. En resumidas cuentas, los resultados de la tesis avalan el uso de la metodología ISA como método de análisis alternativo y sistemático para secuencias accidentales en LWRs. ABSTRACT The loss of coolant accident (LOCA) in nuclear reactors is one of the most concerning and analized accidents from the beginning of the use of fission technology for electric power production. From the point of view of safety analyses, LOCA holds a forefront place in both Deterministic (DSA) and Probabilistic Safety Analysis (PSA), which have significantly evolved from their original state in both safeguard performance credibility and human actuation. This thesis addresses a systematic analysis of small and medium LOCA sequences, in different places of a nuclear Pressurized Water Reactor (PWR) and with total failure of High Pressure Safety Injection (HPSI). Such an analysis has been grounded on the Integrated Safety Assessment (ISA) methodology, developed by the Spanish Nuclear Regulatory Body (CSN). ISA involves the application of advanced methods of simulation and PSA for obtaining Damage Domains that topologically quantify the likelihood of success and damage regarding certain uncertain parameters.TRACE v5.0 (patch 2) code has been used as the thermalhydraulic simulation tool for the elaboration of this work. Nowadays, TRACE is supported by the US NRC as a plant code for the simulation and analysis of sequences in light water reactors (LWR). The main objectives of the work are the following ones: (1) the in-depth analysis of small and medium LOCA sequences in different places of a Westinghouse three-loop PWR (Almaraz NPP), with failed HPSI, regarding important parameters, such as break size or delay in operator response; (2) obtainment and analysis of Damage Domains related to LOCA transients in PWRs, according to ISA methodology; and (3) review some of the results of generic safety analyses for LOCA sequences in those conditions. The results of the thesis cover three separated areas: (a) the physical phenomenology of the sequences under study; (b) the conclusions of LOCA safety analyses; and (c) the importance of consequences of human actions by the operating crew. These results, in turn, are of two main types: (1) endorsement of previous knowledge about this kind of sequences, which is included in the literature; and (2) findings in each of the three aforementioned areas, not reported in the reviewed literature. In short, the results of this thesis support the use of ISA-like methodology as an alternative method for systematic analysis of LWR accidental sequences.