136 resultados para ND-YLF LASER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outline: • Introduction • Fundamental Physics of the Laser-Plasma Interaction in Laser Shock Processing • Theoretical/Computational Model Description • Some Results. Analysis of Interaction Parameters • Experimental Validation. Diagnosis Setup • Discussion and Outlook

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an educational software addressed to the students of optical communication courses, for a simple visualization of the basic dynamic processes of semiconductor lasers. The graphic interface allows the user to choose the laser and the modulation parameters and it plots the laser power output and instantaneous frequency versus time. Additionally, the optical frequency variations are numerically shifted into the audible frequency range in order to produce a sound wave from the computer loudspeakers. Using the proposed software, the student can simultaneously see and hear how the laser intensity and frequency change, depending on the modulation and device parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the use of ESS-Bilbao fast neutron lines for irradiation of materials for nuclear fusion is studied. For the comparison of ESS-Bilbao with an inertial fusion facility a simplified model of HiPER chamber has been used. Several positions for irradiation at ESS-Bilbao have been also compared. The material chosen for the damage analysis is silica due to its importance on IFC optics. In this work a detailed comparison between the two facilities for silica irradiation is given. The comparison covers the neutron fluxes, doses, defect production and PKA spectra. This study is also intended as a methodological approach or guideline for future works on other materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of back contact solar cells requires holes generations on the wafers to keep both positive and negative contacts on the back side of the cell. This drilling process weakens the wafer mechanically due to the presence of the holes and the damage introduced during the process as microcracks. In this study, several chemical processes have been applied to drilled wafers in order to eliminate or reduce the damage generated during this fabrication step. The treatments analyzed are the followings: alkaline etching during 1, 3 and 5 minutes, acid etching for 2 and 4 minutes and texturisation. To determine mechanical strength of the samples a common mechanical study has been carried out testing the samples by the Ring on Ring bending test and obtaining the stress state in the moment of failure by FE simulation. Finally the results obtained for each treatment were fitted to a three parameter Weibull distribution

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (fem). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterization of the NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NWs diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectra of Si NWs, where it is demonstrated that temperature induced by the laser beam play a major role in shaping the Raman spectrum of Si NWs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low frequency modulation of the laser source (menor que30KHz) allows the generation of a pulsed signal that intermittently excites the gold nanorods. The temperature curves obtained for different frequencies and duty cycles of modulation but with equal average power and identical laser parameters, show that the thermal behavior in continuous wave and modulation modes is the same. However, the cell death experiments suggest that the percentage of death is higher in the cases of modulation. This observation allows us to conclude that there are other effects in addition to temperature that contribute to the cellular death. The mechanical effects like sound or pressure waves are expected to be generated from thermal expansion of gold nanorods. In order to study the behavior and magnitude of these processes we have developed a measure device based on ultrasound piezoelectric receivers (25KHz) and a lock-in amplifier that is able to detect the sound waves generated in samples of gold nanorods during laser irradiation providing us a voltage result proportional to the pressure signal. The first results show that the pressure measurements are directly proportional to the concentration of gold nanorods and the laser power, therefore, our present work is focused on determine the real influence of these effects in the cell death process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study was performed in order to determine the influence of the sequence of operations on the effectiveness of Laser Shock Peening (LSP) treatment in increasing the fatigue performances of open-hole aluminium specimens. Residual stress measurements, fractographic analysis and FEM analysis were performed, indicating the presence of compressive residual stresses on the surface of the treated specimens and tensile residual stresses in the mid-section along the thickness of the specimens. Negative effects on fatigue lives were encountered on the specimens with the hole already present, while positive effect were observed in specimens in which the hole was drilled after LSP treatment. These results indicate that LSP can be a good solution for “in production” application, in which open holes are to be drilled after the LSP treatment. The application in which LSP is used “in service” on structures with pre-existing cut-outs, has proven to be impracticable in the investigated configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica final lens performance in laser fusion facilities: HiPER and LIFE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional motion generated in a cold, infinite, uniform plasma of density na by the absorption, in a certain plane, of a linear pulse of energy per unit time and area = 4>0t/r, 0< t< r, is considered, the analysis allows for thermal conduction and viscosity of ions and electrons, their energy exchange, and an electron heat flux limiter The resulting motion is self-similar and governed by a single nondimensional parameter a«(n0 2T/0)2/3 Detailed asymptotic results are obtained for both a < l and a > l , the general behavior of the solution for arbitrary a is discussed The analysis can be extended to the case of a plasma initially occupying a half-space, and throws light on how to optimize the hydrodynamics of laser fusion plasmas Known approximate results corresponding to motion of a plasma submitted to constant irradiation (<()) are recovered in the present work under appropriate limiting processes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation = (j>0f/T(0< (< T) at the critical density nc(«c/«0=eoKe)213, where k, m, are Boltzmann's constant and the ion mass, and Ke X (electron temperature)5'2 = heat conductivity. If a >e- 4 ' 3 , a deflagration wave separates an isentropic compression with a shock bounding the undisturbed plasma, and an isentropic expansion flow to the vacuum. The structures of these three regions are completely determined; in particular, the Chapman-Jouguet condition is proved and the density behind the deflagration is found. The deflagration-compression thickness ratio is large (small) for a^e- 5 ' 3(a>e- 5 ' 3 ) . The compression to expansion ratio for both energy and thickness is 0(e"2). For Z,- large, a deflagration exists even if a~e~413. Condition a>e~4'3 may be applied to pulses that are not linear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation

€~4'3, a qualitative discussion of how plasma behavior changes with a, is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present improved experimental transition probabilities for the optical Ca I 4s4p-4s4d and 4s4p-4p2multiplets. The values were determined with an absolute uncertainty of 10%. Transition probabilities have been determined by the branching ratios from the measurement of relative line intensities emitted by laser-induced plasma (LIP). The line intensities were obtained with the target (leadcalcium) placed in argon atmosphere at 6 Torr, recorded at a 2.5 µs delay from the laser pulse, which provides appropriate measurement conditions, and analysed between 350.0 and 550.0 nm. They are measured when the plasma reaches local thermodynamic equilibrium (LTE). The plasma is characterized by electron temperature (T) of 11400 K and an electron number density (Ne) of 1.1 x 1016 cm-3. The influence self-absorption has been estimated for every line, and plasma homogeneity has been checked. The values obtained were compared with previous experimental values in the literature. The method for measurement of transition probabilities using laser-induced plasma as spectroscopic source has been checked.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition that the expansion flow of laser-produced plasmas experiences when one moves from long, low intensity pulses (temperature vanishing at the isentropic plasma-vacuum front,lying at finite distance) to short, intense ones (non-zero, uniform temperature at the plasma-vacuum front, lying at infinity) is studied. For plznar geometry and lqge ion number Z, the transition occurs for dq5/dt=0.14(27/8)k712Z’1zn$/m4f, 12nK,,; mi, and K are laser intensity, critical density,ion mass, and Spitzer’s heat conduction coefficient. This result remains valid for finite Zit,h ough the numerical factor in d$/dt is different. Shorter wavelength lasers and higher 4 plasmas allow faster rising pulses below transition.