58 resultados para LIQUID-CRYSTAL MIXTURES
Resumo:
In this paper we describe a twisted nematic liquid crystal (TNLC) device structure with optical feedback capable of bistable operation and optical memory. Its structure is the conventional one as employed in hybrid optical bistability.
Resumo:
Vertical Alignment Nematics (VANs) displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. In spite of their name, the liquid crystal (LC) director is never exactly vertical, rather it always show a small angle with the normal to the sample plane called tilt that may vary throughout the cell bulk. Its values are ultimately determined by the pretilt, defined as the tilt angle on the surfaces in the absence of voltage.
Resumo:
This paper describes the theory, design, applications and performance of a new Reconfigurable Add-drop Multiplexer (ROADM) with flexible bandwidth allocation. The device can address several wavelengths at the input to four output fibers, according to the holograms stored in a SLM (Spatial Light Modulator), where all the outputs are equalized in power. All combinations of the input wavelengths are possible at the different output fibers. Each fiber has assigned all the signals with the same bandwidth; the possible bandwidths are 12.5GHz, 25GHz, 50GHz and 100GHz, according to ITU-T 694.1 Recommendation. It is possible to route several signals with different bandwidth in real time thanks to Liquid Crystal over Silicon (LCoS) technology.
Resumo:
A comparative study on alignment performance and microstructure of inorganic layers used for liquid crystal cell conditioning has been carried out. The study has focused on two specific materials, SiOx and SiO2, deposited under different conditions. The purpose was to establish a relationship between layer microstructure and liquid crystal alignment. The surface morphology has been studied by FESEM and AFM. An analysis on liquid crystal alignment, pretilt angle, response time, contrast ratio and the conditions to develop backflow effect (significant rise time increase due to pure homeotropic alignment) on vertically-aligned nematic cells has been carried out. A technique to overcome the presence of backflow has been identified. The full comparative study of SiOx and SiO2 layer properties and their influence over liquid crystal alignment and electrooptic response is presented.
Resumo:
Within the last years there has been increasing interest in direct liquid fuel cells as power sources for portable devices and, in the future, power plants for electric vehicles and other transport media as ships will join those applications. Methanol is considerably more convenient and easy to use than gaseous hydrogen and a considerable work is devoted to the development of direct methanol fuel cells. But ethanol has much lower toxicity and from an ecological viewpoint ethanol is exceptional among all other types of fuel as is the only chemical fuel in renewable supply. The aim of this study is to investigate the possibility of using direct alcohol fuel cells fed with alcohol mixtures. For this purpose, a comparative exergy analysis of a direct alcohol fuel cell fed with alcohol mixtures against the same fuel cell fed with single alcohols is performed. The exergetic efficiency and the exergy loss and destruction are calculated and compared in each case. When alcohol mixtures are fed to the fuel cell, the contribution of each fuel to the fuel cell performance is weighted attending to their relative proportion in the aqueous solution. The optimum alcohol composition for methanol/ethanol mixtures has been determined.
Resumo:
We study theoretically the stability of two superposed fluid layers heated laterally. The fluids are supposed to be immiscible, the interface undeformable and of infinite horizontal extension. Combined thermocapillary and buoyancy forces give rise to a basic flow when a temperature difference is applied. The calculations are performed for a melt of GaAs under a layer of molten B2 O3 , a configuration of considerable technological importance. Four dif- ferent flow patterns and five temperature configurations are found for the basic state in this system. A linear stability analysis shows that the basic state may be destabilized by oscilla- tory motions leading to the so-called hydrothermal waves. Depending on the relative height of the two layers these hydrothermal waves propagate parallel or perpendicular to the temperature gradient. This analysis reveals that these perturbations can alter significantly the liquid flow in the liquid-encapsulated crystal growth techniques.
Resumo:
Antiferroelectric liquid crystals are attractive for microdisplay applications, because of their fast switching and wide viewing angle; however the pretransitional effect reduces the contrast of the display. As a promising alternative orthoconic antiferroelectric liquid crystals (OAFLC) with a cone angle of 90º provide a good dark state between crossed polarized independently of the cell rotation. These materials are properly surface stabilized in 1.5μm thick cell required for π retardation, which limits their use in display applications. In this work, new OAFLC mixtures have been surface stabilized in thick cells. This achievement may open a new area of OAFLC applications in photonic devices.
Resumo:
The dynamics of inviscid, axisymmetric liquid bridges permits a simplified treatment if the bridge is long enough. Under such condition the evolution of the liquid zone is satisfactorily explained through a non-linear one-dimensional model. In the case of breaking, the one-dimensional model fails when the neck radius of the liquid column is close to zero; however, the model allows the calculation of the time variation of the liquid-bridge interface as well as of the fluid velocity field and, because the last part of the evolution is not needed, the overall results such as the breaking time and the volume of each of the two drops resulting after breakage can be calculated. In this paper numerical results concerning the behavior of clinical liquid bridges subjected to a small axial gravitational field are presented.
Resumo:
The stability of slender, axisymmetric liquid bridges held by surface tension forces between two coaxial, parallel solid disks having different radii is studied by using standard perturbation techniques. The results obtained show that the behaviour of such configurations becomes similar to that of liquid bridges between equal disks when subject to small axial gravity forces.
Resumo:
n this paper the influence of an axial microgravity on the dynamic stability of axisymmetric slender liquid bridges between unequal disks is numerically studied by using a one-dimensional theory. The breaking of such liquid configurations is analyzed and the dependence of some overall characteristics of the breaking process on the value of axial microgravity, the geometry and the volume of the liquid bridge, as well as stability limits are obtained.
Resumo:
A feature of stability diagrams of liquid bridges between unequal disks subjected to small axial gravity forces is that, for each separation of disks, there is a value of microgravity for which an absolute minimum volume limit is reached. The dependence of such microgravity values on the liquid bridge geometry has been experimentally checked by using the neutral buoyancy technique, experimental results being in complete agreement with theoretical ones. Analytical background assuring the experimental procedure used is presented, and a second order analytical expression for the equilirium interface is also calculated.
Resumo:
The study of the stability of long liquid columns under microgravity was the purpose of one of the experiments carried out aboard Spacelab-Dl. In this paper a preliminary analysis of this experiment, mainly concerning the different liquid column breakages, is presented. As shown in the paper, the behaviour, both static and dynamic, of long liquid bridges can be accurately predicted by using available theoretical models.
Minimum volume stability limits for axisymmetric liquid bridges subject to steady axial acceleration
Resumo:
In this paper the influence of an axial microgravity on the minimum volume stability limit of axisymmetric liquid bridges between unequal disks is analyzed both theoretically and experimentally. The results here presented extend the knowledge of the static behaviour of liquid bridges to fluid configurations different from those studied up to now (almost equal disks). Experimental results, obtained by simulating microgravity conditions by the neutral buoyancy technique, are also presented and are shown to be in complete agreement with theoretical ones.