48 resultados para Image Processing, Visual Prostheses, Visual Information, Artificial Human Vision, Visual Perception
Resumo:
Quizás el Código Morse, inventado en 1838 para su uso en la telegrafía, es uno de los primeros ejemplos de la utilización práctica de la compresión de datos [1], donde las letras más comunes del alfabeto son codificadas con códigos más cortos que las demás. A partir de 1940 y tras el desarrollo de la teoría de la información y la creación de los primeros ordenadores, la compresión de la información ha sido un reto constante y fundamental entre los campos de trabajo de investigadores de todo tipo. Cuanto mayor es nuestra comprensión sobre el significado de la información, mayor es nuestro éxito comprimiéndola. En el caso de la información multimedia, su naturaleza permite la compresión con pérdidas, alcanzando así cotas de compresión imposibles para los algoritmos sin pérdidas. Estos “recientes” algoritmos con pérdidas han estado mayoritariamente basados en transformación de la información al dominio de la frecuencia y en la eliminación de parte de la información en dicho dominio. Transformar al dominio de la frecuencia posee ventajas pero también involucra unos costes computacionales inevitables. Esta tesis presenta un nuevo algoritmo de compresión multimedia llamado “LHE” (Logarithmical Hopping Encoding) que no requiere transformación al dominio de la frecuencia, sino que trabaja en el dominio del espacio. Esto lo convierte en un algoritmo lineal de reducida complejidad computacional. Los resultados del algoritmo son prometedores, superando al estándar JPEG en calidad y velocidad. Para ello el algoritmo utiliza como base la respuesta fisiológica del ojo humano ante el estímulo luminoso. El ojo, al igual que el resto de los sentidos, responde al logaritmo de la señal de acuerdo a la ley de Weber. El algoritmo se compone de varias etapas. Una de ellas es la medición de la “Relevancia Perceptual”, una nueva métrica que nos va a permitir medir la relevancia que tiene la información en la mente del sujeto y en base a la misma, degradar en mayor o menor medida su contenido, a través de lo que he llamado “sub-muestreado elástico”. La etapa de sub-muestreado elástico constituye una nueva técnica sin precedentes en el tratamiento digital de imágenes. Permite tomar más o menos muestras en diferentes áreas de una imagen en función de su relevancia perceptual. En esta tesis se dan los primeros pasos para la elaboración de lo que puede llegar a ser un nuevo formato estándar de compresión multimedia (imagen, video y audio) libre de patentes y de alto rendimiento tanto en velocidad como en calidad. ABSTRACT The Morse code, invented in 1838 for use in telegraphy, is one of the first examples of the practical use of data compression [1], where the most common letters of the alphabet are coded shorter than the rest of codes. From 1940 and after the development of the theory of information and the creation of the first computers, compression of information has been a constant and fundamental challenge among any type of researchers. The greater our understanding of the meaning of information, the greater our success at compressing. In the case of multimedia information, its nature allows lossy compression, reaching impossible compression rates compared with lossless algorithms. These "recent" lossy algorithms have been mainly based on information transformation to frequency domain and elimination of some of the information in that domain. Transforming the frequency domain has advantages but also involves inevitable computational costs. This thesis introduces a new multimedia compression algorithm called "LHE" (logarithmical Hopping Encoding) that does not require transformation to frequency domain, but works in the space domain. This feature makes LHE a linear algorithm of reduced computational complexity. The results of the algorithm are promising, outperforming the JPEG standard in quality and speed. The basis of the algorithm is the physiological response of the human eye to the light stimulus. The eye, like other senses, responds to the logarithm of the signal according with Weber law. The algorithm consists of several stages. One is the measurement of "perceptual relevance," a new metric that will allow us to measure the relevance of information in the subject's mind and based on it; degrade accordingly their contents, through what I have called "elastic downsampling". Elastic downsampling stage is an unprecedented new technique in digital image processing. It lets take more or less samples in different areas of an image based on their perceptual relevance. This thesis introduces the first steps for the development of what may become a new standard multimedia compression format (image, video and audio) free of patents and high performance in both speed and quality.
Resumo:
El desarrollo de las técnicas de imágenes por resonancia magnética han permitido el estudio y cuantificación, in vivo, de los cambios que ocurren en la morfología cerebral ligados a procesos tales como el neurodesarrollo, el envejecimiento, el aprendizaje o la enfermedad. Un gran número de métodos de morfometría han sido desarrollados con el fin de extraer la información contenida en estas imágenes y traducirla en indicadores de forma o tamaño, tales como el volumen o el grosor cortical; marcadores que son posteriormente empleados para encontrar diferencias estadísticas entre poblaciones de sujetos o realizar correlaciones entre la morfología cerebral y, por ejemplo, la edad o la severidad de determinada enfermedad. A pesar de la amplia variedad de biomarcadores y metodologías de morfometría, muchos estudios sesgan sus hipótesis, y con ello los resultados experimentales, al empleo de un número reducido de biomarcadores o a al uso de una única metodología de procesamiento. Con el presente trabajo se pretende demostrar la importancia del empleo de diversos métodos de morfometría para lograr una mejor caracterización del proceso que se desea estudiar. En el mismo se emplea el análisis de forma para detectar diferencias, tanto globales como locales, en la morfología del tálamo entre pacientes adolescentes con episodios tempranos de psicosis y adolescentes sanos. Los resultados obtenidos demuestran que la diferencia de volumen talámico entre ambas poblaciones de sujetos, previamente descrita en la literatura, se debe a una reducción del volumen de la región anterior-mediodorsal y del núcleo pulvinar del tálamo de los pacientes respecto a los sujetos sanos. Además, se describe el desarrollo de un estudio longitudinal, en sujetos sanos, que emplea simultáneamente distintos biomarcadores para la caracterización y cuantificación de los cambios que ocurren en la morfología de la corteza cerebral durante la adolescencia. A través de este estudio se revela que el proceso de “alisado” que experimenta la corteza cerebral durante la adolescencia es consecuencia de una disminución de la profundidad, ligada a un incremento en el ancho, de los surcos corticales. Finalmente, esta metodología es aplicada, en un diseño transversal, para el estudio de las causas que provocan el decrecimiento tanto del grosor cortical como del índice de girificación en adolescentes con episodios tempranos de psicosis. ABSTRACT The ever evolving sophistication of magnetic resonance image techniques continue to provide new tools to characterize and quantify, in vivo, brain morphologic changes related to neurodevelopment, senescence, learning or disease. The majority of morphometric methods extract shape or size descriptors such as volume, surface area, and cortical thickness from the MRI image. These morphological measurements are commonly entered in statistical analytic approaches for testing between-group differences or for correlations between the morphological measurement and other variables such as age, sex, or disease severity. A wide variety of morphological biomarkers are reported in the literature. Despite this wide range of potentially useful biomarkers and available morphometric methods, the hypotheses and findings of the grand majority of morphological studies are biased because reports assess only one morphometric feature and usually use only one image processing method. Throughout this dissertation biomarkers and image processing strategies are combined to provide innovative and useful morphometric tools for examining brain changes during neurodevelopment. Specifically, a shape analysis technique allowing for a fine-grained assessment of regional thalamic volume in early-onset psychosis patients and healthy comparison subjects is implemented. Results show that disease-related reductions in global thalamic volume, as previously described by other authors, could be particularly driven by a deficit in the anterior-mediodorsal and pulvinar thalamic regions in patients relative to healthy subjects. Furthermore, in healthy adolescents different cortical features are extracted and combined and their interdependency is assessed over time. This study attempts to extend current knowledge of normal brain development, specifically the largely unexplored relationship between changes of distinct cortical morphological measurements during adolescence. This study demonstrates that cortical flattening, present during adolescence, is produced by a combination of age-related increase in sulcal width and decrease in sulcal depth. Finally, this methodology is applied to a cross-sectional study, investigating the mechanisms underlying the decrease in cortical thickness and gyrification observed in psychotic patients with a disease onset during adolescence.
Resumo:
La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.