112 resultados para Illumination subspace
Resumo:
We have analyzed the increase of the sheet conductance (ΔG□) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high ΔG□, even higher than that measured in a silicon reference sample. This increase in the ΔG□ magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition.
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.
Resumo:
A unified solution framework is presented for one-, two- or three-dimensional complex non-symmetric eigenvalue problems, respectively governing linear modal instability of incompressible fluid flows in rectangular domains having two, one or no homogeneous spatial directions. The solution algorithm is based on subspace iteration in which the spatial discretization matrix is formed, stored and inverted serially. Results delivered by spectral collocation based on the Chebyshev-Gauss-Lobatto (CGL) points and a suite of high-order finite-difference methods comprising the previously employed for this type of work Dispersion-Relation-Preserving (DRP) and Padé finite-difference schemes, as well as the Summationby- parts (SBP) and the new high-order finite-difference scheme of order q (FD-q) have been compared from the point of view of accuracy and efficiency in standard validation cases of temporal local and BiGlobal linear instability. The FD-q method has been found to significantly outperform all other finite difference schemes in solving classic linear local, BiGlobal, and TriGlobal eigenvalue problems, as regards both memory and CPU time requirements. Results shown in the present study disprove the paradigm that spectral methods are superior to finite difference methods in terms of computational cost, at equal accuracy, FD-q spatial discretization delivering a speedup of ð (10 4). Consequently, accurate solutions of the three-dimensional (TriGlobal) eigenvalue problems may be solved on typical desktop computers with modest computational effort.
Resumo:
Optics detailed analysis of an improved collimation system for LED light sources
Resumo:
Smooth light extraction in lighting optical fibre
Resumo:
Field method for dielectric concentrator design
Resumo:
In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory calculated in the design process. Curved tracking trajectory helps to broaden the incident angle?s range significantly. We have chosen an afocal-type structure which aim to direct the parallel rays of large incident angles to parallel output rays. The RMS of the divergence angle of the output rays remains below 1 degree for an incident angular range of ±450. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.
Resumo:
In SSL general illumination, there is a clear trend to high flux packages with higher efficiency and higher CRI addressed with the use of multiple color chips and phosphors. However, such light sources require the optics provide color mixing, both in the near-field and far-field. This design problem is specially challenging for collimated luminaries, in which diffusers (which dramatically reduce the brightness) cannot be applied without enlarging the exit aperture too much. In this work we present first injection molded prototypes of a novel primary shell-shaped optics that have microlenses on both sides to provide Köhler integration. This shell is design so when it is placed on top of an inhomogeneous multichip Lambertian LED, creates a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with only small increment of the size (about 10-20%, so the average brightness is similar to the brightness of the source). This shell-mixer device is very versatile and permits now to use a lens or a reflector secondary optics to collimate the light as desired, without color separation effects. Experimental measurements have shown optical efficiency of the shell of 95%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.
Resumo:
Lateral moving optics along straight path has already been studied in the past. However, their relative small angular range can be a limitation to potential applications. In this work, a new design concept of SMS moving optics is developed, in which the movement is no longer lateral but follows a curved trajectory, which is calculated in the design process. We have chosen an afocal system, which aim to direct the parallel rays of large incident angles to parallel output rays, and we have obtained that the RMS of the divergence angle of the output rays remains below 1 degree within a input angular range of ±45 output. Potential applications of this beam-steering device are: skylights to provide steerable natural illumination, building integrated CPV systems, and steerable LED illumination.
Resumo:
Aplanatic designs present great interest in the optics field since they are free from spherical aberration and linear coma at the axial direction. Nevertheless nowadays it cannot be found on literature any thin aplanatic design based on a lens. This work presents the first aplanatic thin lens (in this case a dome-shaped faceted TIR lens performing light collimation), designed for LED illumination applications. This device, due to its TIR structure (defined as an anomalous microstructure as we will see) presents good color-mixing properties. We will show this by means of raytrace simulations, as well as high optical efficiency.
Resumo:
LEDs are substituting fluorescent and incandescent bulbs as illumination sources due to their low power consumption and long lifetime. Visible Light Communications (VLC) makes use of the LEDs short switching times to transmit information. Although LEDs switching speed is around Mbps range, higher speeds (hundred of Mbps) can be reached by using high bandwidth-efficiency modulation techniques. However, the use of these techniques requires a more complex driver which elevates drastically its power consumption. In this work an energy efficiency analysis of the different VLC modulation techniques and drivers is presented. Besides, the design of new schemes of VLC drivers is described.
Resumo:
Improving energy efficiency in buildings is one of the goals of the Smart City initiatives and a challenge for the European Union. This paper presents a 6LoWPAN wireless transducer network (BatNet) as part of an open energy management system. This network has been designed to operate in buildings, to collect environmental information (temperature, humidity, illumination and presence) and electrical consumption in real time (voltage, current and power factor). The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.
Resumo:
This paper describes a novel approach to phonotactic LID, where instead of using soft-counts based on phoneme lattices, we use posteriogram to obtain n-gram counts. The high-dimensional vectors of counts are reduced to low-dimensional units for which we adapted the commonly used term i-vectors. The reduction is based on multinomial subspace modeling and is designed to work in the total-variability space. The proposed technique was tested on the NIST 2009 LRE set with better results to a system based on using soft-counts (Cavg on 30s: 3.15% vs 3.43%), and with very good results when fused with an acoustic i-vector LID system (Cavg on 30s acoustic 2.4% vs 1.25%). The proposed technique is also compared with another low dimensional projection system based on PCA. In comparison with the original soft-counts, the proposed technique provides better results, reduces the problems due to sparse counts, and avoids the process of using pruning techniques when creating the lattices.
Resumo:
In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.