48 resultados para Frenagem magnética


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El desarrollo de las técnicas de imágenes por resonancia magnética han permitido el estudio y cuantificación, in vivo, de los cambios que ocurren en la morfología cerebral ligados a procesos tales como el neurodesarrollo, el envejecimiento, el aprendizaje o la enfermedad. Un gran número de métodos de morfometría han sido desarrollados con el fin de extraer la información contenida en estas imágenes y traducirla en indicadores de forma o tamaño, tales como el volumen o el grosor cortical; marcadores que son posteriormente empleados para encontrar diferencias estadísticas entre poblaciones de sujetos o realizar correlaciones entre la morfología cerebral y, por ejemplo, la edad o la severidad de determinada enfermedad. A pesar de la amplia variedad de biomarcadores y metodologías de morfometría, muchos estudios sesgan sus hipótesis, y con ello los resultados experimentales, al empleo de un número reducido de biomarcadores o a al uso de una única metodología de procesamiento. Con el presente trabajo se pretende demostrar la importancia del empleo de diversos métodos de morfometría para lograr una mejor caracterización del proceso que se desea estudiar. En el mismo se emplea el análisis de forma para detectar diferencias, tanto globales como locales, en la morfología del tálamo entre pacientes adolescentes con episodios tempranos de psicosis y adolescentes sanos. Los resultados obtenidos demuestran que la diferencia de volumen talámico entre ambas poblaciones de sujetos, previamente descrita en la literatura, se debe a una reducción del volumen de la región anterior-mediodorsal y del núcleo pulvinar del tálamo de los pacientes respecto a los sujetos sanos. Además, se describe el desarrollo de un estudio longitudinal, en sujetos sanos, que emplea simultáneamente distintos biomarcadores para la caracterización y cuantificación de los cambios que ocurren en la morfología de la corteza cerebral durante la adolescencia. A través de este estudio se revela que el proceso de “alisado” que experimenta la corteza cerebral durante la adolescencia es consecuencia de una disminución de la profundidad, ligada a un incremento en el ancho, de los surcos corticales. Finalmente, esta metodología es aplicada, en un diseño transversal, para el estudio de las causas que provocan el decrecimiento tanto del grosor cortical como del índice de girificación en adolescentes con episodios tempranos de psicosis. ABSTRACT The ever evolving sophistication of magnetic resonance image techniques continue to provide new tools to characterize and quantify, in vivo, brain morphologic changes related to neurodevelopment, senescence, learning or disease. The majority of morphometric methods extract shape or size descriptors such as volume, surface area, and cortical thickness from the MRI image. These morphological measurements are commonly entered in statistical analytic approaches for testing between-group differences or for correlations between the morphological measurement and other variables such as age, sex, or disease severity. A wide variety of morphological biomarkers are reported in the literature. Despite this wide range of potentially useful biomarkers and available morphometric methods, the hypotheses and findings of the grand majority of morphological studies are biased because reports assess only one morphometric feature and usually use only one image processing method. Throughout this dissertation biomarkers and image processing strategies are combined to provide innovative and useful morphometric tools for examining brain changes during neurodevelopment. Specifically, a shape analysis technique allowing for a fine-grained assessment of regional thalamic volume in early-onset psychosis patients and healthy comparison subjects is implemented. Results show that disease-related reductions in global thalamic volume, as previously described by other authors, could be particularly driven by a deficit in the anterior-mediodorsal and pulvinar thalamic regions in patients relative to healthy subjects. Furthermore, in healthy adolescents different cortical features are extracted and combined and their interdependency is assessed over time. This study attempts to extend current knowledge of normal brain development, specifically the largely unexplored relationship between changes of distinct cortical morphological measurements during adolescence. This study demonstrates that cortical flattening, present during adolescence, is produced by a combination of age-related increase in sulcal width and decrease in sulcal depth. Finally, this methodology is applied to a cross-sectional study, investigating the mechanisms underlying the decrease in cortical thickness and gyrification observed in psychotic patients with a disease onset during adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo forma parte del proyecto “Health aware enhanced range wireless power transfer systems”, conocido por el acrónimo de ETHER. Los grupos investigadores que forman parte de ETHER involucran a dos instituciones, Universidad Politécnica de Cataluña (UPC) y Universidad Politécnica de Madrid (UPM). En este caso, el trabajo ha sido llevado a cabo en el marco del Centro de Electrónica Industrial(CEI) de la UPM. Además, este trabajo es el tercero en una sucesión de estudios realizados por el CEI con el objetivo de lograr implementar un sistema de carga inalámbrica en un marcapasos. Los trabajos previos al desarrollado son los realizados por Miguel Gifford y María Gonzalez. Otros trabajos del CEI han servido de guía. El principal objetivo de la aplicación, es evitar las operaciones que se llevan a cabo actualmente para la sustitución de la batería de los marcapasos implantados en pacientes. Este periodo de sustitución es del orden de cuatro años, lo que depende del tipo de marcapasos y las circunstancias en las que se vea envuelto el paciente. Se pretende lograr la carga del dispositivo causando la menor molestia posible al paciente sin afectar a su salud. El sistema de carga inalámrica o WPT1, está basado en inducción magnética resonante, conocida como RIC2. Esta tecnología se fundamenta en el uso de bobinas acopladas como elemento transmisor de energía. A su vez, la impedancia de estas bobinas, es compensada mediante el uso de condensadores, obteniendo circuitos resonantes. Mediante el uso de RIC se logran mejores características técnicas para la transmisión de energía en el rango medio. Esto permite salvar la distancia entre el elemento generador y la batería del marcapasos, incluso ante la existencia de tejido orgánico entre las dos bobinas. Se han considerado dos posibilidades de configuraci´on del sistema. Dos etapas: se dispone de dos bobinas, emisora y receptora. Esta configuración supone trabajar a altas frecuencias para conseguir transferencia de energías efectivas teniendo en cuenta las especificaciones del marcapasos. Tres etapas: se dispone de tres bobinas, emisora, intermedia y receptora. Se mejora el alcance, permitiendo trabajar a menores frecuencias, pero complicando el control y la implementación del sistema. Sin embargo, el foco de los esfuerzos invertidos en este trabajo, es el estudio del sistema de optimización que se introduce en las configuraciones anteriormente descritas. La optimización se centra en conseguir máxima transferencia de potencia, quedando relegado a un segundo plano el rendimiento. Esto se justifica por las características de la aplicación donde la principal limitación es la viabilidad del sistema. Asímismo, la viabilidad viene impuesta por la potencia que consume el marcapasos y la que es capaz de suministrar el sistema. Este sistema de optimización se basa en la regulación en frecuencia y en la adaptación de la impedancia de carga. Este último método es estudiado, y se basa en lograr una impedancia de carga igual al complejo conjugado de la impedancia de salida, logrando máxima transferencia de potencia. El sistema de optimización hace uso de varias estructuras de control de electrónica de potencia. Inversor: Se sitúa en la etapa emisora y permite controlar la frecuencia de trabajo del sistema. Rectificador activo: Se sitúa en la etapa receptora y controla el desfase entre intensidad y tensión. Convertidor CC-CC: Se sitúa en la etapa receptora, tras el rectificador. Controla la amplitud de la tensión.Mediante el uso conjunto del rectificador y el convertidor es posible controlar la impedancia de la carga. Se ha realizado un análisis teórico para determinar el punto de funcionamiento óptimo del sistema, y posteriormente, se han validado estos resultados mediante simulaciones. Se demuestra que la potencia transferida por el sistema WTP se multiplica por cinco respecto de la solución original, es decir, en ausencia del sistema de optimización. Además se logra mayor robustez, ya que el control activo del sistema proporciona mayor adaptabilidad ante condiciones alejadas de las de diseño. El trabajo realizado se ha prolongado durante un periodo de doscientos días efectivos con una dedicación de 360 horas de trabajo. El coste total asignado al desempeño del trabajo es de 16.678,94 euros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.