55 resultados para Concrete-filled structures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a preliminary version of Chapter 3 of a State-of-the-Art Report by the IASS Working Group 5: Concrete Shell Roofs. The intention of this chapter is to set forth for those who intend to design concrete shell roofs information and advice about the selection, verification and utilization of commercial computer tools for analysis and design tasks.The computer analysis and design steps for a concrete shell roof are described. Advice follows on the aspects to be considered in the application of commercial finite element (FE)computer programs to concrete shell analysis, starting with recommendations on how novices can gain confidence and competence in the use of software. To establish vocabulary and provide background references, brief surveys are presented of, first,element types and formulations for shells and, second, challenges presented by advanced analyses of shells. The final section of the chapter indicates what capabilities to seek in selecting commercial FE software for the analysis and design of concrete shell roofs. Brief concluding remarks summarize advice regarding judicious use of computer analysis in design practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este trabajo es conocer las posibles modificaciones que puede producir en el comportamiento de las estructuras de hormigón armado (EHA) el hecho de que sean utilizadas como estructuras termoactivas, ya sea como intercambiadores en contacto con el terreno, o como sistema de distribución de calor utilizando la inercia térmica de los elementos de hormigón del edificio, basándose en el uso de energías renovables. Las EHA termoactivas se caracterizan por la incorporación en su interior de tubos de polietileno por los que circulan fluidos a temperaturas medias, que pueden incidir en el comportamiento mecánico de los elementos estructurales debido a dos efectos fundamentales: el incremento de temperatura que se produce en el interior de la EHA y la perturbación provocada por la incorporación de los tubos de polietileno. Con este fin, se ha realizado una campaña experimental de probetas de hormigón, estudiando los dos efectos por separado, por un lado se ha evaluado el comportamiento de probetas de hormigón tipo H-25 y tipo H-30 sometidas a cuatro temperaturas diferentes: 20ºC, 40ºC, 70ºC y 100ºC, ensayando la resistencia a compresión y la resistencia a anclaje/adherencia mediante ensayo “pull-out”; y, por otro lado, se ha evaluado el comportamiento de probetas de hormigón tipo H-25 y tipo H-30, elaboradas con dos tipos de molde (cilíndrico y cúbico), en las que se ha colocado tubos de polietileno en su interior en distintas posiciones, ensayando su resistencia a compresión. Los resultados de los ensayos han puesto de manifiesto que aunque se produce una disminución en la resistencia a compresión, y a arrancamiento, del hormigón, al ser sometido a aumentos de temperatura, esta disminución de la propiedades mecánicas es inferior al 20% al no superar esta tecnología los 70ºC; y respecto a la variación de la resistencia a compresión de probetas cilíndricas y cúbicas, debidas a la incorporación de los tubos de polietileno, se observa que si la posición de los mismos es paralela a la dirección de la carga tampoco se ven comprometidas las propiedad mecánicas del hormigón en valores superiores al 20%. ABSTRACT The aim of this project is to study the effects of using concrete structures as thermo-active constructions, either as energy foundations or other kind of thermo-active ground structures, or as a thermally activated building structure utilizing its own thermal mass conductivity and storage capacity to heat and cool buildings, based on renewable or “free” energy sources. The pipes, filled with a heat carrier fluid, that are embedded into the building´s concrete elements may bring on two different adverse effects on concrete structures. In one hand, the consequence of thermal variations and, on the other hand, because of the fact that the pipes are inside of the concrete mortar and in direct contact with the reinforcing steel bars. For this reason, different types of specimens and testing procedures have been proposed to discuss the effects of temperature (20º, 40ºC, 70ºC y 100ºC) on the performance of two different hardened concrete: H-25 and H-30, and the effects of having the pipes embedded in different positions inside of specimens made of two types of concrete, H-25 and H-30, and with two kind of cast, cylindrical and cubical. The experimental program includes the use of compressive strength test and also pull-out test, in order to investigate the interfacial adhesion quality and interfacial properties between steel bar and concrete. The results of the mechanical test showed that the increase of temperature in hardened concrete specimens lower than 70ºC, and the introduction of embedded pipes placed in parallel to the load, in cylindrical or cubic specimens, does not jeopardize the mechanical properties of concrete with strength decreases higher than 20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of design/verification of reinforcement in concrete shells is reviewed. Methods of analysis are classified, and the elastic-plastic approach is described in detail in the general case of shells subjected to both bending and membrane action. The procedure is then reduced to membrane shells (applicable also to concrete walls) and to pure bending, as in the case of plates. The procedure, which is based on previous research,generally requires the use of a desk-top computer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance-based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column-weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake-table tests were conducted on a 2/5-scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of "immediate occupancy", with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the advent of the computer into the engineering field, the application of the numerical methods to the solution of engineering problems has grown very rapidly. Among the different computer methods of structural analysis the Finite Element (FEM) has been predominantly used. Shells and space structures are very attractive and have been constructed to solve a large variety of functional problems (roofs, industrial building, aqueducts, reservoirs, footings etc). In this type of structures aesthetics, structural efficiency and concept play a very important role. This class of structures can be divided into three main groups, namely continuous (concrete) shells, space frames and tension (fabric, pneumatic, cable etc )structures. In the following only the current applications of the FEM to the analysis of continuous shell structures will be discussed. However, some of the comments on this class of shells can be also applied to some extend to the others, but obviously specific computational problems will be restricted to the continuous shells. Different aspects, such as, the type of elements,input-output computational techniques etc, of the analysis of shells by the FEM will be described below. Clearly, the improvements and developments occurring in general for the FEM since its first appearance in the fifties have had a significative impact on the particular class of structures under discussion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper reports on a collaborative effort between the Swiss Federal Nuclear Safety Inspectorate (ENSI) and their consultants Principia and Stangenberg. As part of the IMPACT III project, reduced scale impact tests of reinforced concrete structures were carried out. The simulation of test X3 is presented here and the numerical results are compared with those obtained in the test, carried out in August 2013. The general object is to improve the safety of nuclear facilities and, more specifically, to demonstrate the capabilities of current simulation techniques to reproduce the behaviour of a reinforced concrete structure impacted by a soft missile. The missile is a steel tube with a mass of 50 kg and travelling at 140 m/s. The target is a 250 mm thick, 2,1 m by 2,1 m reinforced concrete wall, held in a stiff supporting frame. The reinforcement includes both longitudinal and transverse rebars. Calculations were carried out before and after the test with Abaqus (Principia) and SOFiSTiK (Stangenberg). In the Abaqus simulation the concrete is modelled using solid elements and a damaged plasticity formulation, the rebars with embedded beam elements, and the missile with shell elements. In SOFiSTiK the target is modelled with non-linear, layered shell elements for the reinforcement on both sides; non-linear shear deformations of shell/plate elements are approximately included. The results generally indicate a good agreement between calculations and measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arch bridge structural solution has been known for centuries, in fact the simple nature of arch that require low tension and shear strength was an advantage as the simple materials like stone and brick were the only option back in ancient centuries. By the pass of time especially after industrial revolution, the new materials were adopted in construction of arch bridges to reach longer spans. Nowadays one long span arch bridge is made of steel, concrete or combination of these two as "CFST", as the result of using these high strength materials, very long spans can be achieved. The current record for longest arch belongs to Chaotianmen bridge over Yangtze river in China with 552 meters span made of steel and the longest reinforced concrete type is Wanxian bridge which also cross the Yangtze river through a 420 meters span. Today the designer is no longer limited by span length as long as arch bridge is the most applicable solution among other approaches, i.e. cable stayed and suspended bridges are more reasonable if very long span is desired. Like any super structure, the economical and architectural aspects in construction of a bridge is extremely important, in other words, as a narrower bridge has better appearance, it also require smaller volume of material which make the design more economical. Design of such bridge, beside the high strength materials, requires precise structural analysis approaches capable of integrating the combination of material behaviour and complex geometry of structure and various types of loads which may be applied to bridge during its service life. Depend on the design strategy, analysis may only evaluates the linear elastic behaviour of structure or consider the nonlinear properties as well. Although most of structures in the past were designed to act in their elastic range, the rapid increase in computational capacity allow us to consider different sources of nonlinearities in order to achieve a more realistic evaluations where the dynamic behaviour of bridge is important especially in seismic zones where large movements may occur or structure experience P - _ effect during the earthquake. The above mentioned type of analysis is computationally expensive and very time consuming. In recent years, several methods were proposed in order to resolve this problem. Discussion of recent developments on these methods and their application on long span concrete arch bridges is the main goal of this research. Accordingly available long span concrete arch bridges have been studied to gather the critical information about their geometrical aspects and properties of their materials. Based on concluded information, several concrete arch bridges were designed for further studies. The main span of these bridges range from 100 to 400 meters. The Structural analysis methods implemented in in this study are as following: Elastic Analysis: Direct Response History Analysis (DRHA): This method solves the direct equation of motion over time history of applied acceleration or imposed load in linear elastic range. Modal Response History Analysis (MRHA): Similar to DRHA, this method is also based on time history, but the equation of motion is simplified to single degree of freedom system and calculates the response of each mode independently. Performing this analysis require less time than DRHA. Modal Response Spectrum Analysis (MRSA): As it is obvious from its name, this method calculates the peak response of structure for each mode and combine them using modal combination rules based on the introduced spectra of ground motion. This method is expected to be fastest among Elastic analysis. Inelastic Analysis: Nonlinear Response History Analysis (NL-RHA): The most accurate strategy to address significant nonlinearities in structural dynamics is undoubtedly the nonlinear response history analysis which is similar to DRHA but extended to inelastic range by updating the stiffness matrix for every iteration. This onerous task, clearly increase the computational cost especially for unsymmetrical buildings that requires to be analyzed in a full 3D model for taking the torsional effects in to consideration. Modal Pushover Analysis (MPA): The Modal Pushover Analysis is basically the MRHA but extended to inelastic stage. After all, the MRHA cannot solve the system of dynamics because the resisting force fs(u; u_ ) is unknown for inelastic stage. The solution of MPA for this obstacle is using the previously recorded fs to evaluate system of dynamics. Extended Modal Pushover Analysis (EMPA): Expanded Modal pushover is a one of very recent proposed methods which evaluates response of structure under multi-directional excitation using the modal pushover analysis strategy. In one specific mode,the original pushover neglect the contribution of the directions different than characteristic one, this is reasonable in regular symmetric building but a structure with complex shape like long span arch bridges may go through strong modal coupling. This method intend to consider modal coupling while it take same time of computation as MPA. Coupled Nonlinear Static Pushover Analysis (CNSP): The EMPA includes the contribution of non-characteristic direction to the formal MPA procedure. However the static pushovers in EMPA are performed individually for every mode, accordingly the resulted values from different modes can be combined but this is only valid in elastic phase; as soon as any element in structure starts yielding the neutral axis of that section is no longer fixed for both response during the earthquake, meaning the longitudinal deflection unavoidably affect the transverse one or vice versa. To overcome this drawback, the CNSP suggests executing pushover analysis for governing modes of each direction at the same time. This strategy is estimated to be more accurate than MPA and EMPA, moreover the calculation time is reduced because only one pushover analysis is required. Regardless of the strategy, the accuracy of structural analysis is highly dependent on modelling and numerical integration approaches used in evaluation of each method. Therefore the widely used Finite Element Method is implemented in process of all analysis performed in this research. In order to address the study, chapter 2, starts with gathered information about constructed long span arch bridges, this chapter continuous with geometrical and material definition of new models. Chapter 3 provides the detailed information about structural analysis strategies; furthermore the step by step description of procedure of all methods is available in Appendix A. The document ends with the description of results and conclusion of chapter 4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social pressure exerted by urban development, the increase in erosion on many coastal stretches, and the rise in sea level due to climate change over the last few decades have led governments to increase investment in coastal protection. In turn, a reduction in costs and increases in ease of construction and rate of implementation have led to sand-filled geotextile elements, such as bags, tubes, and containers, becoming an alternative or supplement to traditional coastal defence materials, such as rubble mounds, concrete, and so on. Not all coastal zones are appropriate for sand-filled geotextile structures as coastal defences. This article analyses suitable zones for locating geotextile bag revetments to protect coasts from storm erosion and concludes that the least suitable zones are the surf zone (on an open coast and on a slightly protected coast) and deep water (on an open coast), except if a suitable reinforcement is carried out when the demand makes it necessary this build this kind of defence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper some topics related to the design of reinforced concrete (RC) shells are addressed. The influence of the reinforcement layout on the service and ultimate behavior of the shell structure is commented. The well established methodology for dimensioning and verifying RC sections of beam structures is extended. In this way it is possible to treat within a unified procedure the design and verification of RC two dimensional structures, in particular membrane and shell structures. Realistic design situations as multiple steel farnilies and non orthogonal reinforcement layout can be handled. Finally, some examples and applications of the proposed methodology are presented.