47 resultados para Biomedical grid
Resumo:
This paper presents a primary-parallel secondaryseries multicore forward microinverter for photovoltaic ac-module application. The presented microinverter operates with a constant off-time boundary mode control, providing MPPT capability and unity power factor. The proposed multitransformer solution allows using low-profile unitary turns ratio transformers. Therefore, the transformers are better coupled and the overall performance of the microinverter is improved. Due to the multiphase solution, the number of devices increases but the current stress and losses per device are reduced contributing to an easier thermal management. Furthermore, the decoupling capacitor is split among the phases, contributing to a low-profile solution without electrolytic capacitors suitable to be mounted in the frame of a PV module. The proposed solution is compared to the classical parallel-interleaved approach, showing better efficiency in a wide power range and improving the weighted efficiency.
Resumo:
In some countries, photovoltaic (PV) technology is at a stage of development at which it can compete with conventional electricity sources in terms of electricity generation costs, i.e., grid parity. A case in point is Germany, where the PV market has reached a mature stage, the policy support has scaled down and the diffusion rate of PV systems has declined. This development raises a fundamental question: what are the motives to adopt PV systems at grid parity? The point of departure for the relevant literature has been on the impact of policy support, adopters and, recently, local solar companies. However, less attention has been paid to the motivators for adoption at grid parity. This paper presents an in-depth analysis of the diffusion of PV systems, explaining the impact of policy measures, adopters and system suppliers. Anchored in an extensive and exploratory case study in Germany, we provide a context-specific explanation to the motivations to adopt PV systems at grid parity.