48 resultados para Active power generation
Resumo:
Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.
Resumo:
We present an experimental study on the generation of high-peak-power short optical pulses from a fully integrated master-oscillator power-amplifier emitting at 1.5 μm. High-peak-power (2.7 W) optical pulses with short duration (100 ps) have been generated by gain switching the master oscillator under optimized driving conditions. The static and dynamic characteristics of the device have been studied as a function of the driving conditions. The ripples appearing in the power-current characteristics under cw conditions have been attributed to mode hopping between the master oscillator resonant mode and the Fabry-Perot modes of the entire device cavity. Although compound cavity effects have been evidenced to affect the static and dynamic performance of the device, we have demonstrated that trains of single-mode short optical pulses at gigahertz frequencies can be conveniently generated in these devices.
Resumo:
In this paper the power-frequency control of hydropower plants with long penstocks is addressed. In such configuration the effects of pressure waves cannot be neglected and therefore commonly used criteria for adjustment of PID governors would not be appropriate. A second-order Π model of the turbine-penstock based on a lumped parameter approach is considered. A correction factor is introduced in order to approximate the model frequency response to the continuous case in the frequency interval of interest. Using this model, several criteria are analysed for adjusting the PI governor of a hydropower plant operating in an isolated system. Practical criteria for adjusting the PI governor are given. The results are applied to a real case of a small island where the objective is to achieve a generation 100% renewable (wind and hydro). Frequency control is supposed to be provided exclusively by the hydropower plant. It is verified that the usual criterion for tuning the PI controller of isolated hydro plants gives poor results. However, with the new proposed adjustment, the time response is considerably improved