97 resultados para 005 Computer programming, programs
Resumo:
This paper addresses the design of visual paradigms for observing the parallel execution of logic programs. First, an intuitive method is proposed for arriving at the design of a paradigm and its implementation as a tool for a given model of parallelism. This method is based on stepwise reñnement starting from the deñnition of basic notions such as events and observables and some precedence relationships among events which hold for the given model of parallelism. The method is then applied to several types of parallel execution models for logic programs (Orparallelism, Determinate Dependent And parallelism, Restricted and-parallelism) for which visualization paradigms are designed. Finally, VisAndOr, a tool which implements all of these paradigms is presented, together with a discussion of its usefulness through examples.
Resumo:
The Andorra family of languages (which includes the Andorra Kernel Language -AKL) is aimed, in principie, at simultaneously supporting the programming styles of Prolog and committed choice languages. On the other hand, AKL requires a somewhat detailed specification of control by the user. This could be avoided by programming in Prolog to run on AKL. However, Prolog programs cannot be executed directly on AKL. This is due to a number of factors, from more or less trivial syntactic differences to more involved issues such as the treatment of cut and making the exploitation of certain types of parallelism possible. This paper provides basic guidelines for constructing an automatic compiler of Prolog programs into AKL, which can bridge those differences. In addition to supporting Prolog, our style of translation achieves independent and-parallel execution where possible, which is relevant since this type of parallel execution preserves, through the translation, the user-perceived "complexity" of the original Prolog program.
Resumo:
While logic programming languages offer a great deal of scope for parallelism, there is usually some overhead associated with the execution of goals in parallel because of the work involved in task creation and scheduling. In practice, therefore, the "granularity" of a goal, i.e. an estimate of the work available under it, should be taken into account when deciding whether or not to execute a goal concurrently as a sepárate task. This paper describes a method for estimating the granularity of a goal at compile time. The runtime overhead associated with our approach is usually quite small, and the performance improvements resulting from the incorporation of grainsize control can be quite good. This is shown by means of experimental results.
Resumo:
There has been significant interest in parallel execution models for logic programs which exploit Independent And-Parallelism (IAP). In these models, it is necessary to determine which goals are independent and therefore eligible for parallel execution and which goals have to wait for which others during execution. Although this can be done at run-time, it can imply a very heavy overhead. In this paper, we present three algorithms for automatic compiletime parallelization of logic programs using IAP. This is done by converting a clause into a graph-based computational form and then transforming this graph into linear expressions based on &-Prolog, a language for IAP. We also present an algorithm which, given a clause, determines if there is any loss of parallelism due to linearization, for the case in which only unconditional parallelism is desired. Finally, the performance of these annotation algorithms is discussed for some benchmark programs.
Resumo:
This paper presents and proves some fundamental results for independent and-parallelism (IAP). First, the paper treats the issues of correctness and efficiency: after defining strict and non-strict goal independence, it is proved that if strictly independent goals are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. It is also shown that, in the absence of failure, the parallel proof procedure doesn't genérate any additional work (with respect to standard SLDresolution) while the actual execution time is reduced. The same results hold even if non-strictly independent goals are executed in parallel, provided a trivial rewriting of such goals is performed. In addition, and most importantly, treats the issue of compile-time generation of IAP by proposing conditions, to be written at compile-time, to efficiently check strict and non-strict goal independence at run-time and proving the sufficiency of such conditions. It is also shown how simpler conditions can be constructed if some information regarding the binding context of the goals to be executed in parallel is available to the compiler trough either local or program-level analysis. These results therefore provide a formal basis for the automatic compile-time generation of IAP. As a corollary of such results, the paper also proves that negative goals are always non-strictly independent, and that goals which share a first occurrence of an existential variable are never independent.
Resumo:
Abstract is not available
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
The interactions among three important issues involved in the implementation of logic programs in parallel (goal scheduling, precedence, and memory management) are discussed. A simplified, parallel memory management model and an efficient, load-balancing goal scheduling strategy are presented. It is shown how, for systems which support "don't know" non-determinism, special care has to be taken during goal scheduling if the space recovery characteristics of sequential systems are to be preserved. A solution based on selecting only "newer" goals for execution is described, and an algorithm is proposed for efficiently maintaining and determining precedence relationships and variable ages across parallel goals. It is argued that the proposed schemes and algorithms make it possible to extend the storage performance of sequential systems to parallel execution without the considerable overhead previously associated with it. The results are applicable to a wide class of parallel and coroutining systems, and they represent an efficient alternative to "all heap" or "spaghetti stack" allocation models.
Resumo:
Although the sequential execution speed of logic programs has been greatly improved by the concepts introduced in the Warren Abstract Machine (WAM), parallel execution represents the only way to increase this speed beyond the natural limits of sequential systems. However, most proposed parallel logic programming execution models lack the performance optimizations and storage efficiency of sequential systems. This paper presents a parallel abstract machine which is an extension of the WAM and is thus capable of supporting ANDParallelism without giving up the optimizations present in sequential implementations. A suitable instruction set, which can be used as a target by a variety of logic programming languages, is also included. Special instructions are provided to support a generalized version of "Restricted AND-Parallelism" (RAP), a technique which reduces the overhead traditionally associated with the run-time management of variable binding conflicts to a series of simple run-time checks, which select one out of a series of compiled execution graphs.
Resumo:
Distributed parallel execution systems speed up applications by splitting tasks into processes whose execution is assigned to different receiving nodes in a high-bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling such tasks such that each one involves sufñcient computational cost when compared to the task creation and communication costs and other such practical overheads. On the receiving side, an important issue is to have some assurance of the correctness and characteristics of the code received and also of the kind of load the particular task is going to pose, which can be specified by means of certificates. In this paper we present in a tutorial way a number of general solutions to these problems, and illustrate them through their implementation in the Ciao multi-paradigm language and program development environment. This system includes facilities for parallel and distributed execution, an assertion language for specifying complex programs properties (including safety and resource-related properties), and compile-time and run-time tools for performing automated parallelization and resource control, as well as certification of programs with resource consumption assurances and efñcient checking of such certificates.
Resumo:
The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7].
Resumo:
Global data-flow analysis of (constraint) logic programs, which is generally based on abstract interpretation [7], is reaching a comparatively high level of maturity. A natural question is whether it is time for its routine incorporation in standard compilers, something which, beyond a few experimental systems, has not happened to date. Such incorporation arguably makes good sense only if: • the range of applications of global analysis is large enough to justify the additional complication in the compiler, and • global analysis technology can deal with all the features of "practical" languages (e.g., the ISO-Prolog built-ins) and "scales up" for large programs. We present a tutorial overview of a number of concepts and techniques directly related to the issues above, with special emphasis on the first one. In particular, we concéntrate on novel uses of global analysis during program development and debugging, rather than on the more traditional application área of program optimization. The idea of using abstract interpretation for validation and diagnosis has been studied in the context of imperative programming [2] and also of logic programming. The latter work includes issues such as using approximations to reduce the burden posed on programmers by declarative debuggers [6, 3] and automatically generating and checking assertions [4, 5] (which includes the more traditional type checking of strongly typed languages, such as Gódel or Mercury [1, 8, 9]) We also review some solutions for scalability including modular analysis, incremental analysis, and widening. Finally, we discuss solutions for dealing with meta-predicates, side-effects, delay declarations, constraints, dynamic predicates, and other such features which may appear in practical languages. In the discussion we will draw both from the literature and from our experience and that of others in the development and use of the CIAO system analyzer. In order to emphasize the practical aspects of the solutions discussed, the presentation of several concepts will be illustrated by examples run on the CIAO system, which makes extensive use of global analysis and assertions.
Resumo:
Irregular computations pose some of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. In the past decade there has been significant progress in the development of parallelizing compilers for logic programming and, more recently, constraint programming. The typical applications of these paradigms frequently involve irregular computations, which arguably makes the techniques used in these compilers potentially interesting. In this paper we introduce in a tutorial way some of the problems faced by parallelizing compilers for logic and constraint programs. These include the need for inter-procedural pointer aliasing analysis for independence detection and having to manage speculative and irregular computations through task granularity control and dynamic task allocation. We also provide pointers to some of the progress made in these áreas. In the associated talk we demónstrate representatives of several generations of these parallelizing compilers.
Resumo:
Abstract is not available.
Resumo:
We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed.