930 resultados para Proyecto Fin de Carrera


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este Proyecto de fin de carrera titulado: LA VÍDEOVIGILANCIA: TECNOLOGÍAS ACTUALES Y ASPECTOS SOCIOPOLÍTICOS, tiene como objetivo hacer un estudio en los sistemas dedeovigilancia basado en cámaras-IP, con fines de seguridad, control o supervisión. Nos basaremos en exponer los sistemas Vídeovigilancia basados en cámara-IP actuales de ultima generación, cuya principal virtud de estos sistemas, es la comunicación con otros lugares, o espacios públicos como privados y poder visualizar tanto en vivo como en diferido lo que este pasando en ese lugar y en ese momento o haya pasado a través del protocolo de comunicación-IP. Se explicara desde el más básico al más complejo sistema de videovigilancia-IP, también explicaremos su puesta en practica mediante los múltiples interconexiones que estos conlleven. Llegando a este punto, se nos plantea las siguientes cuestiones que da origen a este PFC. Estos sistemas dedeovigilancia-IP, captan las imágenes por medio de las cámaras-IP, proporcionando su facilidad tanto de visionado/grabacion, como de control, ya que no es necesario estar presente e interactuando con otros sistemas digitales de diverso índole actuales, gracias al protocolo-IP. Estos sistemas-IP, tienen su puesta en práctica mediante las instalaciones requeridas ,estas podrán ser sencillas o muy complejas de todos los sistemas-IP. Debido al gran aumento masivo, las tecnologías actuales de diverso índole de cámaras-IP en materia de la vídeovigilancia en lugares públicos, y privados en nuestra sociedad actual, lo hace un medio particularmente invasivo y por ello resulta necesario tanto la concurrencia de condiciones que legitimen los tratamientos de datos de personas identificables, como la definición de los principios y garantías que deban aplicarse ya que estas, repercutirán sobre los derechos de las personas, lo que obligara a fijar ciertas garantías. Se nos plantea los casos en los que la captación y/o tratamiento de imágenes con fines dedeovigilancia que pertenezcan a personas identificadas o identificables, ha obligado a España, y según dispuesto por la Directiva 95/46/CE del Parlamento Europeo, a regularizar esta situación mediante la Ley Orgánica de Protección de Datos (LOPD) 15/1999 de 13 de diciembre, bajo los procedimientos del Estado español en materia sociopolítica, y dando vigor a esta ley, mediante la aprobación de la Instrucción 1/2006 de 8 de noviembre de 2006, cuyo máximo organismo es la Agencia española de Protección de Datos (AGPD). Una vez planteada la motivación y justificación del proyecto, se derivan unos objetivos a cumplir con la realización del mismo. Los objetivos del proyecto se pueden diferenciar en dos clases principalmente. Los objetivos principales y objetivos secundarios. Los objetivos principales de este PFC, nacen directamente de las necesidades planteadas originalmente en materia dedeovigilancia, tanto tecnológicamente basado en las cámaras-IP en la captación y/o tratamiento de imágenes, así como sociopolíticamente donde trataremos de describirlo mediante las indicaciones y criterios con casos prácticos y de cómo deben de aplicarse según la instrucción 1/2006 mediante la LOPD en materia dedeovigilancia, en cuanto a la protección de datos que puedan repercutir sobre el derecho de las personas. Por otra parte los objetivos secundarios, son la extensión del objetivo primario y son de orden cuantificador en este PFC, dando una explicación más exhaustiva del objetivo principal. ABSTRACT In this final year project, entitled: THE VIDEOSURVEILLANCE: CURRENT TECHNOLOGIES AND POLITICALSOCIALS ASPECTS, aims to make a study of video surveillance systems based on IP cameras, for security, control or supervision. We will rely on to expose the camera based video surveillance systems IP-current last generation, whose main virtue of these systems, is communication with other places, or public and private spaces and to view both live and time so this happening in that place and at that time or passed through-IP communication protocol. He explained from the most basic to the most complex-IP video surveillance system, also explain its implementation into practice through multiple interconnections that these entail. Arriving at this point, we face the following issues which gave rise to this PFC. These IP-video surveillance systems, captured images through IP-cameras, providing both ease of viewing / recording, as a control, since it is not necessary to be present and interacting with other digital systems such diverse today, thanks IP-protocol. These systems-IP, have their implementation through the facilities required, these can be simple or very complex all-IP video surveillance systems. Due to the large increase in mass, current technologies of different kinds of IP cameras for video surveillance in public places, and private in our society, it makes a particularly invasive and therefore attendance is necessary both conditions that legitimize data processing of identifiable people, as the definition of the principles and safeguards to be applied as these will impact on the rights of the people, which forced to set certain guarantees. We face those cases in which the uptake and / or image processing video surveillance purposes belonging to identified or identifiable, has forced Spain, and as required by Directive 95/46/EC of the European Parliament, to regularize this situation by the Organic Law on Data Protection (LOPD) 15/1999 of December 13, under the procedures of the Spanish State in sociopolitical, and giving effect to this Act, with the approval of the Instruction 1/2006 of 8 November 2006, the governing body is the Spanish Agency for Data Protection (AGPD). Once raised the motivation and justification for the project, resulting in meeting targets to achieve the same. Project objectives can be differentiated into two main classes, the main objectives and secondary objectives: The main objectives of this PFC, born directly from requirements originally raised for capturing both technologically imaging me and try to describe where sociopolitically, the details and criteria as case studies and should be applied according to the instruction 1 / 2006 by the LOPD on video surveillance system in terms of data protection that could impact on the right people. Moreover the secondary objectives are the extension of the primary and are of a quantifier in this PFC, giving a fuller explanation of the main objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente proyecto se ha realizado un estudio sobre las condiciones acústicas de la iglesia Santa María del Castillo, ubicada en la localidad de Campo Real, al sureste de Madrid. Se trata de una iglesia construida entre los siglos XIV y XVII en diferentes fases, rica en características arquitectónicas correspondientes a varios estilos, tales como el gótico, el renacentista y el barroco. Reconocida en 1981 por sus valores arquitectónicos como Monumento Histórico–Artístico. A partir de unas completas mediciones del interior de la iglesia, se ha realizado un modelo tridimensional del mismo como base para la simulación mediante el software de simulación acústica EASE versión 4.3. Para conseguir que este modelo se asemeje a la realidad, se han realizado medidas del ruido de fondo en el interior de la iglesia en diferentes condiciones ambientales. Además se han creado mediante el software los coeficientes de absorción correspondientes a cada material presente en el interior de la iglesia y se han tenido en cuenta las características de los altavoces utilizados en la megafonía del recinto. El modelo en 3D obtenido caracteriza completamente las condiciones acústicas de la iglesia Santa María del Castillo, y nos sirve para valorar cómo es el sonido en el interior de la misma. Para ello obtenemos valores de diferentes parámetros acústico realizando simulaciones. Parámetros como el tiempo de reverberación y el nivel de presión sonora nos dan una idea general de cómo es el campo sonoro en el interior del recinto. Otros parámetros como el ALCons y el STI nos dan información sobre la inteligibilidad de la palabra en el recinto en el que se está realizando el estudio. Finalmente basándonos en los resultados obtenidos de la simulación se sacan conclusiones sobre las características acústicas de este recinto. La iglesia estudiada no es un recinto apropiado para la palabra y/o la música, además el predominio del campo reverberante sobre el campo directo es claro, esto es debido a las dimensiones del recinto y la poca absorción de los diferentes materiales empleados en su construcción, que son bastante reflexivos al sonido. ABSTRACT The present project undertakes the acoustic study of the church Santa María del Castillo. The church is the main temple of Campo Real, in the south-east of Madrid. It was built over different phases between the 14th and the 17th centuries and therefore, the presence of several architectural styles makes the church of Campo Real an interesting aim for this study. The building was recognised as Historic-Artistic Monument for its architectural value in 1981. Complete measurements from inside of the church were taken to build a computational 3D model which has been used to perform acoustic simulations of the church with the software EASE (Version 4.3). Noise measurements have been taken inside the church at different ambient conditions and they have been used to improve the reliability of the computational model. Furthermore, the model has been provided with software generated absorption coefficients and the characteristics of the actual loudspeakers have been taken into account. The 3D model created characterises all the acoustic conditions of the church Santa María del Castillo and allows the study of the sound properties inside the temple. Parameters such as reverberation time and sound pressure level were calculated performing simulations so the sound field inside the building can be described. Other parameters such as the Articulation Loss of Consonants (ALCons) and the Speech Transmission Index (STI) were studied to derive information about intelligibility inside the church. Finally, based on the results obtained by the simulation, I expose my conclusions about the acoustic characteristics of the building. The main conclusion derived from the present study is that the temple is not an appropriate place for voice or music listening due to the dimensions and the characteristics of the materials used in the construction since they are highly reflective to sound. The reverberant field predominates over the whole audience area in comparison with the direct field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años se observa una creciente demanda de modelos 3D, especialmente orientados al control dimensional dentro de los diferentes campos de la arquitectura o ingeniería, en los que tanto la instrumentación, los métodos de captura (fotogrametría digital y láser escáner), como el tratamiento posterior de la información, requieren de procedimientos y modernas herramientas informáticas acordes con los fines específicos. Los ensayos realizados se encuadran dentro de los métodos de homologación cinegética, que son en definitiva los distintos sistemas de medición y puntuación de las diferentes especies de caza mayor. En este estudio se ha seleccionado un trofeo de gamo para la realización de los diferentes tratamientos, análisis y modelización. En la actualidad los organismos competentes en esta materia emplean, para realizar estos trabajos, mediciones directas y baremos específicos, principalmente con instrumentación analógica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto fin de carrera tiene como finalidad el diseño e implementación de un sistema multicanal de medida de temperaturas con termopares con procesado digital. Se ha realizado un prototipo de cuatro canales con conexión de termopar, que es el tipo de sensor utilizado para realizar dichas medidas. La tensión generada por el termopar es procesada mediante un conversor de termopar a digital con salida en interfaz modo serie o SPI (Serial Peripheral Interface). El control de dicha comunicación se realiza por medio de un Array de Puertas Lógicas Programables o FPGA (Field Programmable Gate Array), en concreto se ha utilizado una plataforma de desarrollo modelo Virtex-5 de la empresa Xilinx. Esta tarjeta se ha programado también para el procesado software y la posterior comunicación serie con el PC, el cual consta de una interfaz de usuario donde se muestran los resultados de las medidas en tiempo real. El proyecto ha sido desarrollado en colaboración con una empresa privada dedicada principalmente al diseño electrónico. La finalidad de este prototipo es el estudio de una actualización del bloque de medida para el control de las curvas de temperatura de un equipo de reparación aeronáutica. En esta memoria se describe el proceso realizado para el desarrollo del prototipo, incluye la presentación de los estudios realizados y la información necesaria para llevar a cabo el diseño, la fabricación y la programación de los diferentes bloques que componen el sistema. ABSTRACT. The aim of this project is to implement a multichannel temperature measurement system with digital processing, using thermocouples. A four-channel prototype with thermocouple connection has been built. The thermocouple voltage is converted to digital line using a Thermocouple-to-Digital Converter with a Serial Perpheral Interface (SPI) output. The master which controls this communication is embedded in a Field Programmable Gate Array (FPGA), specifically the Xilinx Virtex-5 model. This FPGA also has the code for software temperature processing and the prototype to PC serial communication embedded. The PC user interface displays the measurement results in real time. This project has been developed at a private electronics design company. The company wants to study an update to change the analogue temperature controller equipment to a digital one. So this prototype studies a digital version of the temperature measurement block. The processes accomplished for the prototype development are detailed in the next pages of this document. It includes the studies and information needed to develop the design, manufacturing process and programming of the blocks which integrate with the global system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años el Excmo. Ayuntamiento de Nájera ha promovido la construcción en la margen izquierda de la zona norte de la localidad de un Pabellón Multiusos, una Residencia de Personas mayores y un Centro de Día. Por otra parte, en la margen opuesta se sitúan un Centro de Salud y el Frontón Municipal. La expansión de los servicios en la zona norte de Nájera en ambas márgenes, ha llevado al Excmo. Ayuntamiento de Nájera a plantearse la construcción de una pasarela sobre el río que sirva como nexo entre ambas márgenes. A continuación se presenta toda la información necesaria para la elaboración del proyecto básico de la pasarela peatonal sobre el río Najerilla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La carretera CL-605 de Segovia a Zamora se engloba en la Red Básica de Carreteras de la Junta de Castilla y León, con una longitud de unos 170 kms que se desarrollan en las provincias de Segovia, Ávila, Salamanca y Zamora. Su paso por la provincia de Ávila se sitúa entre sus P.P.K.K. aproximados 54+350 y 97+130, atravesando los términos municipales de Arévalo, Aldeaseca, Villanueva del Aceral, Barromán y Madrigal de las Altas Torres. En los cinco casos, las correspondientes localidades se sitúan en las inmediaciones de la carretera, aunque esta atraviesa la zona urbana definiendo una travesía de población sólo en los casos de Arévalo, Aldeaseca y Barromán. Este proyecto tiene por objeto definir y valorar las obras necesarias para la construcción de la variante de la última de las poblaciones indicadas, Barromán, desarrollando la alternativa elegida de las planteadas en el “Estudio de Alternativas” redactado en el mes de enero de 2012. En dicho estudio se procedió a definir cuatro posibles trazados, estimando la valoración de las obras a realizar para su construcción y definiendo y evaluando los criterios que permitieron realizar una comparación del carácter más objetivo posible entre las cuatro alternativas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El trabajo que a continuación desarrollo es la elaboración de mi Trabajo Fin de Grado. Al tratarse del último trabajo antes de terminar el grado en “Ciencias de la Actividad Física y del Deporte”. Está encaminado a que sirva de referencia tanto a mí como a otros profesionales del deporte. Se trata del diseño de una programación de actividad física en medio acuático para mayores, en especial para personas que tengan Fibromialgia, ya que la realización del ejercicio físico aeróbico y anaeróbico tanto en tierra como en agua es bastante beneficioso para ellos. El trabajo tratará de dos partes; una primera parte constará de la teoría del medio acuático y la segunda hablará de la Fibromialgia y de la programación en sí.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La zona llamada de malezas ocupa en los montea do la Sierra de Cazorla (Jaén) una extensión considerable, no bien delimitada que - se aproxima a las 5 ó 6000 Has.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visually impaired people have many difficulties when traveling because it is impossible for them to detect obstacles that stand in their way. Bats instead of using the sight to detect these obstacles use a method based on ultrasounds, as their sense of hearing is much more developed than that of sight. The aim of the project is to design and build a device based on the method used by the bats to detect obstacles and transmit this information to people with vision problems to improve their skills. The method involves sending ultrasonic waves and analyzing the echoes produced when these waves collide with an obstacle. The sent signals are pulses and the information needed is the time elapsed from we send a pulse to receive the echo produced. The speed of sound is fixed within the same environment, so measuring the time it takes the wave to make the return trip, we can easily know the distance where the object is located. To build the device we have to design the necessary circuits, fabricate printed circuit boards and mount the components. We also have to design a program that would work within the digital part, which will be responsible for performing distance calculations and generate the signals with the information for the user. The circuits are the emitter and the receiver. The transmitter circuit is responsible for generating the signals that we will use. We use an ultrasonic transmitter which operates at 40 kHz so the sent pulses have to be modulated with this frequency. For this we generate a 40 kHz wave with an astable multivibrator formed by NAND gates and a train of pulses with a timer. The signal is the product of these two signals. The circuit of the receiver is a signal conditioner which transforms the signals received by the ultrasonic receiver in square pulses. The received signals have a 40 kHz carrier, low voltage and very different shapes. In the signal conditioner we will amplify the voltage to appropriate levels, eliminate the component of 40 kHz and make the shape of the pulses square to use them digitally. To simplify the design and manufacturing process in the digital part of the device we will use the Arduino platform. The pulses sent and received echoes enter through input pins with suitable voltage levels. In the Arduino, our program will poll these two signals storing the time when a pulse occurs. These time values are analyzed and used to generate an audible signal with the user information. This information is stored in the frequency of the signal, so that the generated signal frequency varies depending on the distance at which the objects are. RESUMEN Las personas con discapacidad visual tienen muchas dificultades a la hora de desplazarse ya que les es imposible poder detectar los obstáculos que se interpongan en su camino. Los murciélagos en vez de usar la vista para detectar estos obstáculos utilizan un método basado en ultrasonidos, ya que su sentido del oído está mucho más desarrollado que el de la vista. El objetivo del proyecto es diseñar y construir un dispositivo basado en el método usado por los murciélagos para detectar obstáculos y que pueda ser usado por las personas con problemas en la vista para mejorar sus capacidades. El método utilizado consiste en enviar ondas de ultrasonidos y analizar el eco producido cuando estas ondas chocan con algún obstáculo. Las señales enviadas tendrán forma de pulsos y la información necesaria es el tiempo transcurrido entre que enviamos un pulso y recibimos el eco producido. La velocidad del sonido es fija dentro de un mismo entorno, por lo que midiendo el tiempo que tarda la onda en hacer el viaje de ida y vuelta podemos fácilmente conocer la distancia a la que se encuentra el objeto. Para construir el dispositivo tendremos que diseñar los circuitos necesarios, fabricar las placas de circuito impreso y montar los componentes. También deberemos diseñar el programa que funcionara dentro de la parte digital, que será el encargado de realizar los cálculos de la distancia y de generar las señales con la información para el usuario. Los circuitos diseñados corresponden uno al emisor y otro al receptor. El circuito emisor es el encargado de generar las señales que vamos a emitir. Vamos a usar un emisor de ultrasonidos que funciona a 40 kHz por lo que los pulsos que enviemos van a tener que estar modulados con esta frecuencia. Para ello generamos una onda de 40 kHz mediante un multivibrador aestable formado por puertas NAND y un tren de pulsos con un timer. La señal enviada es el producto de estas dos señales. El circuito de la parte del receptor es un acondicionador de señal que transforma las señales recibidas por el receptor de ultrasonidos en pulsos cuadrados. Las señales recibidas tienen una portadora de 40 kHz para poder usarlas con el receptor de ultrasonidos, bajo voltaje y formas muy diversas. En el acondicionador de señal amplificaremos el voltaje a niveles adecuados además de eliminar la componente de 40 kHz y conseguir pulsos cuadrados que podamos usar de forma digital. Para simplificar el proceso de diseño y fabricación en la parte digital del dispositivo usaremos la plataforma Arduino. Las señales correspondientes el envío de los pulsos y a la recepción de los ecos entraran por pines de entrada después de haber adaptado los niveles de voltaje. En el Arduino, nuestro programa sondeara estas dos señales almacenando el tiempo en el que se produce un pulso. Estos valores de tiempo se analizan y se usan para generar una señal audible con la información para el usuario. Esta información ira almacenada en la frecuencia de la señal, por lo que la señal generada variará su frecuencia en función de la distancia a la que se encuentren los objetos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La preocupación sobre el cambio climático continúa en aumento. Las crecientes evidencias de sus implicaciones ambientales, sociales y económicas plantean escenarios de regulaciones y concesiones públicas a empresas verdes. Las organizaciones privadas trabajan para incorporar nuevos indicadores de sostenibilidad ambiental que les permitan adelantarse a la casi segura futura legislación. Con este telón de fondo, aparecen dos indicadores de sostenibilidad denominados “Huella Ecológica” y “Huella de Carbono”. La Huella Ecológica mide la superficie biológicamente productiva (incluyendo agua y tierra), necesaria para producir todos los recursos que consume y absorber los desechos que genera una actividad. La Huella de Carbono cuantifica la totalidad de gases de efecto invernadero emitidos por efecto directo e indirecto como consecuencia de una actividad. En este contexto, la industria del transporte en general, y en particular el sector de la aviación, están en el punto de mira, por ser los sectores que más emisiones generan. Otro gran foco de emisiones es la ocurrencia de los incendios forestales que, además, se ha convertido en uno de los mayores problemas ecológicos que sufren nuestros montes debido a su frecuencia y gravedad en las últimas décadas. El presente Proyecto Final de Carrera tiene dos objetivos. En primer lugar la cuantificación e interpretación de la Huella de Carbono y Huella Ecológica de la empresa Hispánica de Aviación S.A. (HASA), empresa que presta servicios con helicópteros, sector para el que no se han encontrado estudios de Huella de Carbono hasta la fecha. En segundo lugar, determinar el radio de acción de los helicópteros en su actuación contra incendios forestales para que las emisiones de Gases de Efecto Invernadero compensen su intervención. Para ello se ha utilizado el Método Compuesto de las Cuentas Contables v.12.4 determinando como unidad funcional de producto el kilómetro recorrido por un helicóptero. Por último se ha empleado la metodología utilizada por el Ministerio de Agricultura, Alimentación y Medio Ambiente para el cálculo de emisiones por los Incendios Forestales a fin de realizar una estimación de lo que supone en este sentido la intervención de los helicópteros de HASA en las labores de extinción. La Huella de Carbono y Huella Ecológica para el año 2012 de HASA es 5.515 t CO2e y 1.344 haG. Destaca el peso del consumo de queroseno, que contribuye con 3.103 t CO2e y 786 haG. De acuerdo a las unidades funcionales consideradas, el helicóptero con matrícula SP-SUT/EC-LUQ es el que más Huella de Carbono presenta (12 Kg CO2e/Km) a diferencia del helicóptero con matrícula SP-SUC que es el que menos Huella de Carbono manifiesta (6 Kg CO2e/Km). Entre las diferentes conclusiones se destaca que la salida de un helicóptero a un incendio en España, siempre va a valorarse como compensada en términos de Huella de Carbono. Es decir, las emisiones que va a evitar su salida (disminución de la superficie quemada), son considerablemente mayores que las que se pueden producir por su puesta en funcionamiento. El presente proyecto se acompaña de una propuesta de acciones que se consideran de gran utilidad tanto para posteriores evaluaciones como para la mejora del posicionamiento ambiental de HASA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente proyecto final de carrera titulado “Modelado de alto nivel con SystemC” tiene como objetivo principal el modelado de algunos módulos de un codificador dedeo MPEG-2 utilizando el lenguaje de descripción de sistemas igitales SystemC con un nivel de abstracción TLM o Transaction Level Modeling. SystemC es un lenguaje de descripción de sistemas digitales basado en C++. En él hay un conjunto de rutinas y librerías que implementan tipos de datos, estructuras y procesos especiales para el modelado de sistemas digitales. Su descripción se puede consultar en [GLMS02] El nivel de abstracción TLM se caracteriza por separar la comunicación entre los módulos de su funcionalidad. Este nivel de abstracción hace un mayor énfasis en la funcionalidad de la comunicación entre los módulos (de donde a donde van datos) que la implementación exacta de la misma. En los documentos [RSPF] y [HG] se describen el TLM y un ejemplo de implementación. La arquitectura del modelo se basa en el codificador MVIP-2 descrito en [Gar04], de dicho modelo, los módulos implementados son: · IVIDEOH: módulo que realiza un filtrado del vídeo de entrada en la dimensión horizontal y guarda en memoria el video filtrado. · IVIDEOV: módulo que lee de la memoria el vídeo filtrado por IVIDEOH, realiza el filtrado en la dimensión horizontal y escribe el video filtrado en memoria. · DCT: módulo que lee el video filtrado por IVIDEOV, hace la transformada discreta del coseno y guarda el vídeo transformado en la memoria. · QUANT: módulo que lee el video transformado por DCT, lo cuantifica y guarda el resultado en la memoria. · IQUANT: módulo que lee el video cuantificado por QUANT, realiza la cuantificación inversa y guarda el resultado en memoria. · IDCT: módulo que lee el video procesado por IQUANT, realiza la transformada inversa del coseno y guarda el resultado en memoria. · IMEM: módulo que hace de interfaz entre los módulos anteriores y la memoria. Gestiona las peticiones simultáneas de acceso a la memoria y asegura el acceso exclusivo a la memoria en cada instante de tiempo. Todos estos módulos aparecen en gris en la siguiente figura en la que se muestra la arquitectura del modelo: Figura 1. Arquitectura del modelo (VER PDF DEL PFC) En figura también aparecen unos módulos en blanco, dichos módulos son de pruebas y se han añadido para realizar simulaciones y probar los módulos del modelo: · CAMARA: módulo que simula una cámara en blanco y negro, lee la luminancia de un fichero dedeo y lo envía al modelo a través de una FIFO. · FIFO: hace de interfaz entre la cámara y el modelo, guarda los datos que envía la cámara hasta que IVIDEOH los lee. · CONTROL: módulo que se encarga de controlar los módulos que procesan el vídeo, estos le indican cuando terminan de procesar un frame dedeo y este módulo se encarga de iniciar los módulos que sean necesarios para seguir con la codificación. Este módulo se encarga del correcto secuenciamiento de los módulos procesadores dedeo. · RAM: módulo que simula una memoria RAM, incluye un retardo programable en el acceso. Para las pruebas también se han generado ficheros dedeo con el resultado de cada módulo procesador dedeo, ficheros con mensajes y un fichero de trazas en el que se muestra el secuenciamiento de los procesadores. Como resultado del trabajo en el presente PFC se puede concluir que SystemC permite el modelado de sistemas digitales con bastante sencillez (hace falta conocimientos previos de C++ y programación orientada objetos) y permite la realización de modelos con un nivel de abstracción mayor a RTL, el habitual en Verilog y VHDL, en el caso del presente PFC, el TLM. ABSTRACT This final career project titled “High level modeling with SystemC” have as main objective the modeling of some of the modules of an MPEG-2 video coder using the SystemC digital systems description language at the TLM or Transaction Level Modeling abstraction level. SystemC is a digital systems description language based in C++. It contains routines and libraries that define special data types, structures and process to model digital systems. There is a complete description of the SystemC language in the document [GLMS02]. The main characteristic of TLM abstraction level is that it separates the communication among modules of their functionality. This abstraction level puts a higher emphasis in the functionality of the communication (from where to where the data go) than the exact implementation of it. The TLM and an example are described in the documents [RSPF] and [HG]. The architecture of the model is based in the MVIP-2 video coder (described in the document [Gar04]) The modeled modules are: · IVIDEOH: module that filter the video input in the horizontal dimension. It saves the filtered video in the memory. · IVIDEOV: module that read the IVIDEOH filtered video, filter it in the vertical dimension and save the filtered video in the memory. · DCT: module that read the IVIDEOV filtered video, do the discrete cosine transform and save the transformed video in the memory. · QUANT: module that read the DCT transformed video, quantify it and save the quantified video in the memory. · IQUANT: module that read the QUANT processed video, do the inverse quantification and save the result in the memory. · IDCT: module that read the IQUANT processed video, do the inverse cosine transform and save the result in the memory. · IMEM: this module is the interface between the modules described previously and the memory. It manage the simultaneous accesses to the memory and ensure an unique access at each instant of time All this modules are included in grey in the following figure (SEE PDF OF PFC). This figure shows the architecture of the model: Figure 1. Architecture of the model This figure also includes other modules in white, these modules have been added to the model in order to simulate and prove the modules of the model: · CAMARA: simulates a black and white video camera, it reads the luminance of a video file and sends it to the model through a FIFO. · FIFO: is the interface between the camera and the model, it saves the video data sent by the camera until the IVIDEOH module reads it. · CONTROL: controls the modules that process the video. These modules indicate the CONTROL module when they have finished the processing of a video frame. The CONTROL module, then, init the necessary modules to continue with the video coding. This module is responsible of the right sequence of the video processing modules. · RAM: it simulates a RAM memory; it also simulates a programmable delay in the access to the memory. It has been generated video files, text files and a trace file to check the correct function of the model. The trace file shows the sequence of the video processing modules. As a result of the present final career project, it can be deduced that it is quite easy to model digital systems with SystemC (it is only needed previous knowledge of C++ and object oriented programming) and it also allow the modeling with a level of abstraction higher than the RTL used in Verilog and VHDL, in the case of the present final career project, the TLM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En las últimas décadas el mundo ha sufrido un aumento exponencial en la utilización de soluciones tecnológicas, lo que ha desembocado en la necesidad de medir situaciones o estados de los distintos objetos que nos rodean. A menudo, no es posible cablear determinados sensores por lo que ese aumento en la utilización de soluciones tecnológicas, se ha visto traducido en un aumento de la necesidad de utilización de sensórica sin cables para poder hacer telemetrías correctas. A nivel social, el aumento de la demografía mundial está estrechamente ligado al aumento de la necesidad de servicios tecnológicos, por lo que es lógico pensar que a más habitantes, más tecnología será consumida. El objetivo de este Proyecto Final de Carrera está basado en la utilización de diversos nodos o también llamados motas capaces de realizar transferencia de datos en modo sin cables, permitiendo así realizar una aplicación real que solvente problemas generados por el aumento de la densidad de población. En concreto se busca la realización de un sistema de aparcamiento inteligente para estacionamientos en superficie, ayudando por tanto a las tareas de ordenación vehicular dentro del marco de las Smart cities. El sistema está basado en el protocolo de comunicaciones 802.15.4 (ZigBee) cuyas características fundamentales radican en el bajo consumo de energía de los componentes hardware asociados. En primer lugar se realizará un Estado del Arte de las Redes Inalámbricas de Sensores, abordando tanto la arquitectura como el estándar Zigbee y finalmente los componentes XBee que se van a utilizar en este Proyecto. Seguidamente se realizará la algoritmia necesaria para el buen funcionamiento del sistema inteligente de estacionamiento y finalmente se realizará un piloto demostrador del correcto funcionamiento de la tecnología. ABSTRACT In the last decades the world has experienced an exponential increase in the use of technological solutions, which has resulted in the need to measure situations or states of the objects around us. Often, wired sensors cannot be used at many situations, so the increase in the use of technological solutions, has been translated into a increase of the need of using wireless sensors to make correct telemetries. At the social level, the increase in global demographics is closely linked to the increased need for technological services, so it is logical that more people, more technology will be consumed. The objective of this Final Project is based on the use of various nodes or so-called motes, capable of performing data transfer in wireless mode, thereby allowing performing a real application solving problems generated by the increase of population densities. Specifically looking for the realization of a smart outdoor parking system, thus helping to vehicular management tasks within the framework of the Smart Cities. The system is based on the communication protocol 802.15.4 (ZigBee) whose main characteristics lie in the low energy consumption associated to the hardware components. First there will be a State of the Art of Wireless Sensor Networks, addressing both architecture and finally the Zigbee standard XBee components to be used in this project. Then the necessary algorithms will be developed for the proper working of the intelligent parking system and finally there will be a pilot demonstrator validating the whole system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El propósito de este proyecto defin de carrera es la caracterización e instrumentación de un sensor de ultrasonidos modelado por el tutor de este proyecto: Don César Briso Rodrí��guez. Una vez realizado el modelado de dicho sensor, simulando tanto sus caracter�í�sticas f�í�sicas, como sus caracterí��sticas eléctricas, se procede a la intrumentación y uso del mismo. La parte de intrumentaci�ón incluye tanto la electrónica que ser��á necesaria para la excitación del piezoeléctrico, en el modo de emisi�ón, como para la recepción de los pulsos el�éctricos generados por el sensor, como respuesta a los ecos recibidos, y su adecuación a niveles de señal correctos para la adquisici�ón, en el modo de escucha. Tras la adecuaci�ón de las señales para la adquisici�ón, éstas ser�án digitalizadas, tratadas y representadas por pantalla en un PC, a trav�es de una tarjeta de adquisición de datos por puerto USB encargada del muestreo de las señales de respuesta ya tratadas y su posterior enví��o al software de control y representaci�ón desarrollado en este proyecto. El entorno de usuario, el software de control de la tarjeta de adquisición y el software de tratamiento y representaci�ón se ha desarrollado con Visual Basic 2008 y las utilidades gr�áfi�cas de las librer��ías OpenGL. ABSTRACT The purpose of this project is to limit the characterization and implementation of an ultrasonic sensor modeled by Mr. C�ésar Briso Rodr��íguez. Once the sensor modeling by simulating physical characteristics and electrical characteristics, we proceed to the instrumentation and use. This section includes electronic instrumentation that would be necessary for the piezoelectric excitation in the emission mode and for receiving electrical pulses generated by the sensor in response to the received echoes, and matching signal levels right to acquire, in the reception mode. After the adjustment of the signals for the acquisition, these signals will be digitalized, processed and represented on the screen on a PC through a data acquisition card by USB port. Acquisition card is able to sample the response signals and transmit the samples to representation and control software developed in this project. The user interface, the acquisition card control software and processing and representation software has been developed with Visual Basic 2008 and OpenGL graphical libraries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of Room Acoustics it is common using scale models to study a room. Through this method it is possible to predict its behavior, which may be very useful to detect and correct any problem prior to build it, saving many resources. Nowadays this method has been relegated to a secondary position due to the peak of simulation software, which makes possible studying rooms in a cheap, flexible and simple way, as well as it is potentially less time consuming. Nevertheless, the scale model method is still under study, as it may give some additional information. This project intends to focus in pedagogic possibilities of the scale model method. This method offers the student the opportunity of study and grasp some of the most important phenomena in Room Acoustics, in a more intuitive way than just a software simulation. Furthermore most of the existing software in this field is aimed to the technician working in the lab, as efficiently as possible, not to the student trying to understand and learn something. Here, the facilities and resources of Syddansk Universitet regarding this matter will be studied and evaluated, as well as the procedure for the experiments, paying special attention not only to its reliability and accuracy, but also to its didactic possibilities. Besides, if possible, any improvement that could help to enhance any of the listed aspects will be suggested. En el ámbito de la Acústica Arquitectónica es común el uso de modelos a escala para estudiar un recinto determinado. Mediante esta técnica es posible por ejemplo predecir el comportamiento del recinto y detectar problemas antes de su construcción, con el consecuente ahorro de recursos. Actualmente el uso de modelos a escala está desplazado a un segundo plano por el uso de software simulación, debido a la sencillez y flexibilidad que puede aportar la simulación por ordenador, así como a la economía de tiempo y recursos que supone. Sin embargo sigue siendo objeto de estudio, dado que puede aportar información muy valiosa para el ingeniero. Este proyecto se centra en las posibilidades pedagógicas de dicho método. El uso de modelos a escala brinda la oportunidad a los estudiantes de estudiar y comprender algunos de los fenómenos más importantes en la Acústica Arquitectónica de una forma más directa e intuitiva que una simulación por ordenador. Se pretende estudiar y evaluar los medios al alcance de los estudiantes en la Syddansk Universitet, así como los métodos usados, atendiendo no sólo a su precisión y fiabilidad, si no a su potencial pedagógico. Así mismo, si es posible, se propondrán cambios que puedan suponer una mejora en cualquiera de estos aspectos. Así el proyecto se divide en varias secciones claramente diferenciadas. En el apartado Background and Theoretical Basis se introduce el tema del estudio y simulación de recintos acústicos. Se explica su importancia y utilidad, y se comenta la situación actual de estas técnicas, abordando diferentes métodos usados así como sus bases teóricas y principales ventajas e inconvenientes. Bajo el apartado de Project se analizan diferentes factores relacionados con el problema. Se estudian los recursos a disposición del alumno, desde el software y hardware implicados hasta el equipo de medida y otros recursos necesarios para la realización de las prácticas. Es en esta parte donde se centra la parte más importante del trabajo, consistente en la medición y comprobación de las características más relevantes del equipo implicado. Haciendo posible así confirmar su validez y precisión, tanto desde el punto de vista técnico como pedagógico, así como estableciendo los límites dentro de los que se puede considerar fiable el modelo. Al final de este apartado se aborda la influencia de la absorción del aire en altas frecuencias, y la variación en los coeficientes de absorción y dispersión de los materiales respecto de la frecuencia. Por último se realiza una verificación subjetiva del sistema completo, debido a que por limitaciones técnicas no ha sido posible evaluar el montaje en el rango equivalente a toda la banda audible, y que los métodos estudiados tienen como meta última asegurar una buena percepción por parte del oyente en el recinto dado. Dentro del apartado Conclusions se hace un breve resumen de las conclusiones extraídas anteriormente, y se valora el rendimiento y utilidad general del modelo, que a pesar de algunos problemas de precisión y repetibilidad lógicos debido a los medios usados, es válido para ilustrar los fenómenos físicos que se quieren enseñar al alumno. En la sección de Future Work se proponen diferentes vías de trabajo para futuros proyectos en la Syddansk Universitet que podrían ser útiles confirmar el trabajo realizado en este proyecto, mejorar la precisión y fiabilidad del montaje o enriquecer las posibilidades pedagógicas de las prácticas relacionadas. Por último se encuentra, tras el apartado de referencias, los anexos con tablas y gráficas relativas a las medidas realizadas en diferentes partes del trabajo. También se puede encontrar información y material relacionado con el proyecto en el CD adjunto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo presenta un estudio sobre el funcionamiento y aplicaciones de las células de combustible de membrana tipo PEM, o de intercambio de protones, alimentadas con hidrógeno puro y oxigeno obtenido de aire comprimido. Una vez evaluado el proceso de dichas células y las variables que intervienen en el mismo, como presión, humedad y temperatura, se presenta una variedad de métodos para la instrumentación de tales variables así como métodos y sistemas para la estabilidad y control de las mismas, en torno a los valores óptimos para una mayor eficacia en el proceso. Tomando como variable principal a controlar la temperatura del proceso, y exponiendo los valores concretos en torno a 80 grados centígrados entre los que debe situarse, es realizado un modelo del proceso de calentamiento y evolución de la temperatura en función de la potencia del calentador resistivo en el dominio de la frecuencia compleja, y a su vez implementado un sistema de medición mediante sensores termopar de tipo K de respuesta casi lineal. La señal medida por los sensores es amplificada de manera diferencial mediante amplificadores de instrumentación INA2126, y es desarrollado un algoritmo de corrección de error de unión fría (error producido por la inclusión de nuevos metales del conector en el efecto termopar). Son incluidos los datos de test referentes al sistema de medición de temperatura , incluyendo las desviaciones o error respecto a los valores ideales de medida. Para la adquisición de datos y implementación de algoritmos de control, es utilizado un PC con el software Labview de National Instruments, que permite una programación intuitiva, versátil y visual, y poder realizar interfaces de usuario gráficas simples. La conexión entre el hardware de instrumentación y control de la célula y el PC se realiza mediante un interface de adquisición de datos USB NI 6800 que cuenta con un amplio número de salidas y entradas analógicas. Una vez digitalizadas las muestras de la señal medida, y corregido el error de unión fría anteriormente apuntado, es implementado en dicho software un controlador de tipo PID ( proporcional-integral-derivativo) , que se presenta como uno de los métodos más adecuados por su simplicidad de programación y su eficacia para el control de este tipo de variables. Para la evaluación del comportamiento del sistema son expuestas simulaciones mediante el software Matlab y Simulink determinando por tanto las mejores estrategias para desarrollar el control PID, así como los posibles resultados del proceso. En cuanto al sistema de calentamiento de los fluidos, es empleado un elemento resistor calentador, cuya potencia es controlada mediante un circuito electrónico compuesto por un detector de cruce por cero de la onda AC de alimentación y un sistema formado por un elemento TRIAC y su circuito de accionamiento. De manera análoga se expone el sistema de instrumentación para la presión de los gases en el circuito, variable que oscila en valores próximos a 3 atmosferas, para ello es empleado un sensor de presión con salida en corriente mediante bucle 4-20 mA, y un convertidor simple corriente a tensión para la entrada al sistema de adquisición de datos. Consecuentemente se presenta el esquema y componentes necesarios para la canalización, calentamiento y humidificación de los gases empleados en el proceso así como la situación de los sensores y actuadores. Por último el trabajo expone la relación de algoritmos desarrollados y un apéndice con información relativa al software Labview. ABTRACT This document presents a study about the operation and applications of PEM fuel cells (Proton exchange membrane fuel cells), fed with pure hydrogen and oxygen obtained from compressed air. Having evaluated the process of these cells and the variables involved on it, such as pressure, humidity and temperature, there is a variety of methods for implementing their control and to set up them around optimal values for greater efficiency in the process. Taking as primary process variable the temperature, and exposing its correct values around 80 degrees centigrade, between which must be placed, is carried out a model of the heating process and the temperature evolution related with the resistive heater power on the complex frequency domain, and is implemented a measuring system with thermocouple sensor type K performing a almost linear response. The differential signal measured by the sensor is amplified through INA2126 instrumentation amplifiers, and is developed a cold junction error correction algorithm (error produced by the inclusion of additional metals of connectors on the thermocouple effect). Data from the test concerning the temperature measurement system are included , including deviations or error regarding the ideal values of measurement. For data acquisition and implementation of control algorithms, is used a PC with LabVIEW software from National Instruments, which makes programming intuitive, versatile, visual, and useful to perform simple user interfaces. The connection between the instrumentation and control hardware of the cell and the PC interface is via a USB data acquisition NI 6800 that has a large number of analog inputs and outputs. Once stored the samples of the measured signal, and correct the error noted above junction, is implemented a software controller PID (proportional-integral-derivative), which is presented as one of the best methods for their programming simplicity and effectiveness for the control of such variables. To evaluate the performance of the system are presented simulations using Matlab and Simulink software thereby determining the best strategies to develop PID control, and possible outcomes of the process. As fluid heating system, is employed a heater resistor element whose power is controlled by an electronic circuit comprising a zero crossing detector of the AC power wave and a system consisting of a Triac and its drive circuit. As made with temperature variable it is developed an instrumentation system for gas pressure in the circuit, variable ranging in values around 3 atmospheres, it is employed a pressure sensor with a current output via 4-20 mA loop, and a single current to voltage converter to adequate the input to the data acquisition system. Consequently is developed the scheme and components needed for circulation, heating and humidification of the gases used in the process as well as the location of sensors and actuators. Finally the document presents the list of algorithms and an appendix with information about Labview software.