33 resultados para video on demand
Resumo:
Cognitive impairment is the main cause of disability in developed societies. New interactive technologies help therapists in neurorehabilitation in order to increase patients’ autonomy and quality of life. This work proposes Interactive Video (IV) as a technology to develop cognitive rehabilitation tasks based on Activities of Daily Living (ADL). ADL cognitive task has been developed and integrated with eye-tracking technology for task interaction and patients’ performance monitoring.
Resumo:
The use of new technologies in neurorehabilitation has led to higher intensity rehabilitation processes, extending therapies in an economically sustainable way. Interactive Video (IV) technology allows therapists to work with virtual environments that reproduce real situations. In this way, patients deal with Activities of the Daily Living (ADL) immersed within enhanced environments [1]. These rehabilitation exercises, which focus in re-learning lost functions, will try to modulate the neural plasticity processes [2]. This research presents a system where a neurorehabilitation IV-based environment has been integrated with an eye-tracker device in order to monitor and to interact using visual attention. While patients are interacting with the neurorehabilitation environment, their visual behavior is closely related with their cognitive state, which in turn mirrors the brain damage condition suffered by them [3] [4]. Patients’ gaze data can provide knowledge on their attention focus and their cognitive state, as well as on the validity of the rehabilitation tasks proposed [5].
Resumo:
A novel scheme for depth sequences compression, based on a perceptual coding algorithm, is proposed. A depth sequence describes the object position in the 3D scene, and is used, in Free Viewpoint Video, for the generation of synthetic video sequences. In perceptual video coding the human visual system characteristics are exploited to improve the compression efficiency. As depth sequences are never shown, the perceptual video coding, assessed over them, is not effective. The proposed algorithm is based on a novel perceptual rate distortion optimization process, assessed over the perceptual distortion of the rendered views generated through the encoded depth sequences. The experimental results show the effectiveness of the proposed method, able to obtain a very considerable improvement of the rendered view perceptual quality.