37 resultados para resting-state networks
Resumo:
The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Isolated electrical systems lack electrical interconnection to other networks and are usually placed in geographically isolated areas—mainly islands or locations in developing countries. Until recently, only diesel generators were able to assure a safe and reliable supply in exchange for very high costs for fuel transportation and system operation. Transmission system operators (TSOs) are increasingly seeking to replace traditional energy models based on large groups of conventional generation units with mixed solutions where diesel groups are held as backup generation and important advantages are provided by renewable energy sources. The grid codes determine the technical requirements to be fulfilled by the generators connected in any electrical network, but regulations applied to isolated grids are more demanding. In technical literature it is rather easy to find and compare grid codes for interconnected electrical systems. However, the existing literature is incomplete and sparse regarding isolated grids. This paper aims to review the current state of isolated systems and grid codes applicable to them, specifying points of comparison and defining the guidelines to be followed by the upcoming regulations.
Resumo:
Electrical power systems are changing their traditional structure, which was based on a little number of large generating power plants placed at great distances from loads by new models that tend to split the big production nodes in many smaller ones. The set of small groups which are located close to consumers and provide safe and quality energy is called distributed generation (DG). The proximity of the sources to the loads reduces losses associated with transportation and increases overall system efficiency. DG also favors the inclusion of renewable energy sources in isolated electrical systems or remote microgrids, because they can be installed where the natural resource is located. In both cases, as weak grids unable to get help from other nearby networks, it is essential to ensure appropriate behavior of DG sources to guarantee power system safety and stability. The grid codes sets out the technical requirements to be fulfilled for the sources connected in these electrical networks. In technical literature it is rather easy to find and compare grid codes for interconnected electrical systems. However, the existing literature is incomplete and sparse regarding isolated electrical systems and this happens due to the difficulties inherent in the pursuit of codes. Some countries have developed their own legislation only for their island territory (as Spain or France), others apply the same set of rules as in mainland, another group of island countries have elaborated a complete grid code for all generating sources and some others lack specific regulation. This paper aims to make a complete review of the state of the art in grid codes applicable to isolated systems, setting the comparison between them and defining the guidelines predictably followed by the upcoming regulations in these particular systems.
Resumo:
We study how to use quantum key distribution (QKD) in common optical network infrastructures and propose a method to overcome its distance limitations. QKD is the first technology offering information theoretic secret-key distribution that relies only on the fundamental principles of quantum physics. Point-to-point QKD devices have reached a mature industrial state; however, these devices are severely limited in distance, since signals at the quantum level (e.g. single photons) are highly affected by the losses in the communication channel and intermediate devices. To overcome this limitation, intermediate nodes (i.e. repeaters) are used. Both, quantum-regime and trusted, classical, repeaters have been proposed in the QKD literature, but only the latter can be implemented in practice. As a novelty, we propose here a new QKD network model based on the use of not fully trusted intermediate nodes, referred as weakly trusted repeaters. This approach forces the attacker to simultaneously break several paths to get access to the exchanged key, thus improving significantly the security of the network. We formalize the model using network codes and provide real scenarios that allow users to exchange secure keys over metropolitan optical networks using only passive components.
Resumo:
Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.