38 resultados para penalty-based genetic algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto se centra en la implementación de un sistema de control activo de ruido mediante algoritmos genéticos. Para ello, se ha tenido en cuenta el tipo de ruido que se quiere cancelar y el diseño del controlador, parte fundamental del sistema de control. El control activo de ruido sólo es eficaz a bajas frecuencias, hasta los 250 Hz, justo para las cuales los elementos pasivos pierden efectividad, y en zonas o recintos de pequeñas dimensiones y conductos. El controlador ha de ser capaz de seguir todas las posibles variaciones del campo acústico que puedan producirse (variaciones de fase, de frecuencia, de amplitud, de funciones de transferencia electro-acústicas, etc.). Su funcionamiento está basado en algoritmos FIR e IIR adaptativos. La elección de un tipo de filtro u otro depende de características tales como linealidad, causalidad y número de coeficientes. Para que la función de transferencia del controlador siga las variaciones que surgen en el entorno acústico de cancelación, tiene que ir variando el valor de los coeficientes del filtro mediante un algoritmo adaptativo. En este proyecto se emplea como algoritmo adaptativo un algoritmo genético, basado en la selección biológica, es decir, simulando el comportamiento evolutivo de los sistemas biológicos. Las simulaciones se han realizado con dos tipos de señales: ruido de carácter aleatorio (banda ancha) y ruido periódico (banda estrecha). En la parte final del proyecto se muestran los resultados obtenidos y las conclusiones al respecto. Summary. This project is focused on the implementation of an active noise control system using genetic algorithms. For that, it has been taken into account the noise type wanted to be canceled and the controller design, a key part of the control system. The active noise control is only effective at low frequencies, up to 250 Hz, for which the passive elements lose effectiveness, and in small areas or enclosures and ducts. The controller must be able to follow all the possible variations of the acoustic field that might be produced (phase, frequency, amplitude, electro-acoustic transfer functions, etc.). It is based on adaptive FIR and IIR algorithms. The choice of a kind of filter or another depends on characteristics like linearity, causality and number of coefficients. Moreover, the transfer function of the controller has to be changing filter coefficients value thought an adaptive algorithm. In this project a genetic algorithm is used as adaptive algorithm, based on biological selection, simulating the evolutionary behavior of biological systems. The simulations have been implemented with two signal types: random noise (broadband) and periodic noise (narrowband). In the final part of the project the results and conclusions are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, in order to select a speed controller for a specific non-linear autonomous ground vehicle, proportional-integral-derivative (PID), Fuzzy, and linear quadratic regulator (LQR) controllers were designed. Here, in order to carry out the tuning of the above controllers, a multicomputer genetic algorithm (MGA) was designed. Then, the results of the MGA were used to parameterize the PID, Fuzzy and LQR controllers and to test them under laboratory conditions. Finally, a comparative analysis of the performance of the three controllers was conducted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis focuses on the modeling of multimedia systems to create personalized recommendation services based on the analysis of users’ audiovisual consumption. Research is focused on the characterization of both users’ audiovisual consumption and content, specifically images and video. This double characterization converges into a hybrid recommendation algorithm, adapted to different application scenarios covering different specificities and constraints. Hybrid recommendation systems use both content and user information as input data, applying the knowledge from the analysis of these data as the initial step to feed the algorithms in order to generate personalized recommendations. Regarding the user information, this doctoral thesis focuses on the analysis of audiovisual consumption to infer implicitly acquired preferences. The inference process is based on a new probabilistic model proposed in the text. This model takes into account qualitative and quantitative consumption factors on the one hand, and external factors such as zapping factor or company factor on the other. As for content information, this research focuses on the modeling of descriptors and aesthetic characteristics, which influence the user and are thus useful for the recommendation system. Similarly, the automatic extraction of these descriptors from the audiovisual piece without excessive computational cost has been considered a priority, in order to ensure applicability to different real scenarios. Finally, a new content-based recommendation algorithm has been created from the previously acquired information, i.e. user preferences and content descriptors. This algorithm has been hybridized with a collaborative filtering algorithm obtained from the current state of the art, so as to compare the efficiency of this hybrid recommender with the individual techniques of recommendation (different hybridization techniques of the state of the art have been studied for suitability). The content-based recommendation focuses on the influence of the aesthetic characteristics on the users. The heterogeneity of the possible users of these kinds of systems calls for the use of different criteria and attributes to create effective recommendations. Therefore, the proposed algorithm is adaptable to different perceptions producing a dynamic representation of preferences to obtain personalized recommendations for each user of the system. The hypotheses of this doctoral thesis have been validated by conducting a set of tests with real users, or by querying a database containing user preferences - available to the scientific community. This thesis is structured based on the different research and validation methodologies of the techniques involved. In the three central chapters the state of the art is studied and the developed algorithms and models are validated via self-designed tests. It should be noted that some of these tests are incremental and confirm the validation of previously discussed techniques. Resumen Esta tesis doctoral se centra en el modelado de sistemas multimedia para la creación de servicios personalizados de recomendación a partir del análisis de la actividad de consumo audiovisual de los usuarios. La investigación se focaliza en la caracterización tanto del consumo audiovisual del usuario como de la naturaleza de los contenidos, concretamente imágenes y vídeos. Esta doble caracterización de usuarios y contenidos confluye en un algoritmo de recomendación híbrido que se adapta a distintos escenarios de aplicación, cada uno de ellos con distintas peculiaridades y restricciones. Todo sistema de recomendación híbrido toma como datos de partida tanto información del usuario como del contenido, y utiliza este conocimiento como entrada para algoritmos que permiten generar recomendaciones personalizadas. Por la parte de la información del usuario, la tesis se centra en el análisis del consumo audiovisual para inferir preferencias que, por lo tanto, se adquieren de manera implícita. Para ello, se ha propuesto un nuevo modelo probabilístico que tiene en cuenta factores de consumo tanto cuantitativos como cualitativos, así como otros factores de contorno, como el factor de zapping o el factor de compañía, que condicionan la incertidumbre de la inferencia. En cuanto a la información del contenido, la investigación se ha centrado en la definición de descriptores de carácter estético y morfológico que resultan influyentes en el usuario y que, por lo tanto, son útiles para la recomendación. Del mismo modo, se ha considerado una prioridad que estos descriptores se puedan extraer automáticamente de un contenido sin exigir grandes requisitos computacionales y, de tal forma que se garantice la posibilidad de aplicación a escenarios reales de diverso tipo. Por último, explotando la información de preferencias del usuario y de descripción de los contenidos ya obtenida, se ha creado un nuevo algoritmo de recomendación basado en contenido. Este algoritmo se cruza con un algoritmo de filtrado colaborativo de referencia en el estado del arte, de tal manera que se compara la eficiencia de este recomendador híbrido (donde se ha investigado la idoneidad de las diferentes técnicas de hibridación del estado del arte) con cada una de las técnicas individuales de recomendación. El algoritmo de recomendación basado en contenido que se ha creado se centra en las posibilidades de la influencia de factores estéticos en los usuarios, teniendo en cuenta que la heterogeneidad del conjunto de usuarios provoca que los criterios y atributos que condicionan las preferencias de cada individuo sean diferentes. Por lo tanto, el algoritmo se adapta a las diferentes percepciones y articula una metodología dinámica de representación de las preferencias que permite obtener recomendaciones personalizadas, únicas para cada usuario del sistema. Todas las hipótesis de la tesis han sido debidamente validadas mediante la realización de pruebas con usuarios reales o con bases de datos de preferencias de usuarios que están a disposición de la comunidad científica. La diferente metodología de investigación y validación de cada una de las técnicas abordadas condiciona la estructura de la tesis, de tal manera que los tres capítulos centrales se estructuran sobre su propio estudio del estado del arte y los algoritmos y modelos desarrollados se validan mediante pruebas autónomas, sin impedir que, en algún caso, las pruebas sean incrementales y ratifiquen la validación de técnicas expuestas anteriormente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actualmente existen aplicaciones que permiten simular el comportamiento de bacterias en distintos hábitats y los procesos que ocurren en estos para facilitar su estudio y experimentación sin la necesidad de un laboratorio. Una de las aplicaciones de software libre para la simulación de poblaciones bacteriológicas mas usada es iDynoMiCS (individual-based Dynamics of Microbial Communities Simulator), un simulador basado en agentes que permite trabajar con varios modelos computacionales de bacterias en 2D y 3D. Este simulador permite una gran libertad al configurar una numerosa cantidad de variables con respecto al entorno, reacciones químicas y otros detalles importantes. Una característica importante es el poder simular de manera sencilla la conjugación de plásmidos entre bacterias. Los plásmidos son moléculas de ADN diferentes del cromosoma celular, generalmente circularles, que se replican, transcriben y conjugan independientemente del ADN cromosómico. Estas están presentes normalmente en bacterias procariotas, y en algunas ocasiones en eucariotas, sin embargo, en este tipo de células son llamados episomas. Dado el complejo comportamiento de los plásmidos y la gama de posibilidades que estos presentan como mecanismos externos al funcionamiento básico de la célula, en la mayoría de los casos confiriéndole distintas ventajas evolutivas, como por ejemplo: resistencia antibiótica, entre otros, resulta importante su estudio y subsecuente manipulación. Sin embargo, el marco operativo del iDynoMiCS, en cuanto a simulación de plásmidos se refiere, es demasiado sencillo y no permite realizar operaciones más complejas que el análisis de la propagación de un plásmido en la comunidad. El presente trabajo surge para resolver esta deficiencia de iDynomics. Aquí se analizarán, desarrollarán e implementarán las modificaciones necesarias para que iDynomics pueda simular satisfactoriamente y mas apegado a la realidad la conjugación de plásmidos y permita así mismo resolver distintas operaciones lógicas, como lo son los circuitos genéticos, basadas en plásmidos. También se analizarán los resultados obtenidos de acuerdo a distintos estudios relevantes y a la comparación de los resultados obtenidos con el código original de iDynomics. Adicionalmente se analizará un estudio comparando la eficiencia de detección de una sustancia mediante dos circuitos genéticos distintos. Asimismo el presente trabajo puede tener interés para el grupo LIA de la Facultad de Informática de la Universidad Politécnica de Madrid, el cual está participando en el proyecto europeo BACTOCOM que se centra en el estudio de la conjugación de plásmidos y circuitos genéticos. --ABSTRACT--Currently there are applications that simulate the behavior of bacteria in different habitats and the ongoing processes inside them to facilitate their study and experimentation without the need for an actual laboratory. One of the most used open source applications to simulate bacterial populations is iDynoMiCS (individual-based Dynamics of Microbial Communities Simulator), an agent-based simulator that allows working with several computer models of 2D and 3D bacteria in biofilms. This simulator allows great freedom by means of a large number of configurable variables regarding environment, chemical reactions and other important details of the simulation. Within these characteristics there exists a very basic framework to simulate plasmid conjugation. Plasmids are DNA molecules physically different from the cell’s chromosome, commonly found as small circular, double-stranded DNA molecules that are replicated, conjugated and transcribed independently of chromosomal DNA. These bacteria are normally present in prokaryotes and sometimes in eukaryotes, which in this case these cells are called episomes. Plasmids are external mechanisms to the cells basic operations, and as such, in the majority of the cases, confer to the host cell various evolutionary advantages, like antibiotic resistance for example. It is mperative to further study plasmids and the possibilities they present. However, the operational framework of the iDynoMiCS plasmid simulation is too simple, and does not allow more complex operations that the analysis of the spread of a plasmid in the community. This project was conceived to resolve this particular deficiency in iDynomics, moreover, in this paper is discussed, developed and implemented the necessary changes to iDynomics simulation software so it can satisfactorily and realistically simulate plasmid conjugation, and allow the possibility to solve various ogic operations, such as plasmid-based genetic circuits. Moreover the results obtained will be analyzed and compared with other relevant studies and with those obtained with the original iDynomics code. Conjointly, an additional study detailing the sensing of a substance with two different genetic circuits will be presented. This work may also be relevant to the LIA group of the Faculty of Informatics of the Polytechnic University of Madrid, which is participating in the European project BACTOCOM that focuses on the study of the of plasmid conjugation and genetic circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a novel approach to deal with the design of in-building wireless networks deployments is proposed. This approach known as MOQZEA (Multiobjective Quality Zone Based Evolutionary Algorithm) is a hybr id evolutionary algorithm adapted to use a novel fitness function, based on the definition of quality zones for the different objective functions considered. This approach is conceived to solve wireless network design problems without previous information of the required number of transmitters, considering simultaneously a high number of objective functions and optimizing multiple configuration parameters of the transmitters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.