39 resultados para non-uniform scale perturbation finite difference scheme
Resumo:
En España existen del orden de 1,300 grandes presas, de las cuales un 20% fueron construidas antes de los años 60. El hecho de que existan actualmente una gran cantidad de presas antiguas aún en operación, ha producido un creciente interés en reevaluar su seguridad empleando herramientas nuevas o modificadas que incorporan modelos de fallo teóricos más completos, conceptos geotécnicos más complejos y nuevas técnicas de evaluación de la seguridad. Una manera muy común de abordar el análisis de estabilidad de presas de gravedad es, por ejemplo, considerar el deslizamiento a través de la interfase presa-cimiento empleando el criterio de rotura lineal de Mohr-Coulomb, en donde la cohesión y el ángulo de rozamiento son los parámetros que definen la resistencia al corte de la superficie de contacto. Sin embargo la influencia de aspectos como la presencia de planos de debilidad en el macizo rocoso de cimentación; la influencia de otros criterios de rotura para la junta y para el macizo rocoso (ej. el criterio de rotura de Hoek-Brown); las deformaciones volumétricas que ocurren durante la deformación plástica en el fallo del macizo rocoso (i.e., influencia de la dilatancia) no son usualmente consideradas durante el diseño original de la presa. En este contexto, en la presente tesis doctoral se propone una metodología analítica para el análisis de la estabilidad al deslizamiento de presas de hormigón, considerando un mecanismo de fallo en la cimentación caracterizado por la presencia de una familia de discontinuidades. En particular, se considera la posibilidad de que exista una junta sub-horizontal, preexistente y persistente en el macizo rocoso de la cimentación, con una superficie potencial de fallo que se extiende a través del macizo rocoso. El coeficiente de seguridad es entonces estimado usando una combinación de las resistencias a lo largo de los planos de rotura, cuyas resistencias son evaluadas empleando los criterios de rotura no lineales de Barton y Choubey (1977) y Barton y Bandis (1990), a lo largo del plano de deslizamiento de la junta; y el criterio de rotura de Hoek y Brown (1980) en su versión generalizada (Hoek et al. 2002), a lo largo del macizo rocoso. La metodología propuesta también considera la influencia del comportamiento del macizo rocoso cuando este sigue una ley de flujo no asociada con ángulo de dilatancia constante (Hoek y Brown 1997). La nueva metodología analítica propuesta es usada para evaluar las condiciones de estabilidad empleando dos modelos: un modelo determinista y un modelo probabilista, cuyos resultados son el valor del coeficiente de seguridad y la probabilidad de fallo al deslizamiento, respectivamente. El modelo determinista, implementado en MATLAB, es validado usando soluciones numéricas calculadas mediante el método de las diferencias finitas, empleando el código FLAC 6.0. El modelo propuesto proporciona resultados que son bastante similares a aquellos calculados con FLAC; sin embargo, los costos computacionales de la formulación propuesta son significativamente menores, facilitando el análisis de sensibilidad de la influencia de los diferentes parámetros de entrada sobre la seguridad de la presa, de cuyos resultados se obtienen los parámetros que más peso tienen en la estabilidad al deslizamiento de la estructura, manifestándose además la influencia de la ley de flujo en la rotura del macizo rocoso. La probabilidad de fallo es obtenida empleando el método de fiabilidad de primer orden (First Order Reliability Method; FORM), y los resultados de FORM son posteriormente validados mediante simulaciones de Monte Carlo. Los resultados obtenidos mediante ambas metodologías demuestran que, para el caso no asociado, los valores de probabilidad de fallo se ajustan de manera satisfactoria a los obtenidos mediante las simulaciones de Monte Carlo. Los resultados del caso asociado no son tan buenos, ya que producen resultados con errores del 0.7% al 66%, en los que no obstante se obtiene una buena concordancia cuando los casos se encuentran en, o cerca de, la situación de equilibrio límite. La eficiencia computacional es la principal ventaja que ofrece el método FORM para el análisis de la estabilidad de presas de hormigón, a diferencia de las simulaciones de Monte Carlo (que requiere de al menos 4 horas por cada ejecución) FORM requiere tan solo de 1 a 3 minutos en cada ejecución. There are 1,300 large dams in Spain, 20% of which were built before 1960. The fact that there are still many old dams in operation has produced an interest of reevaluate their safety using new or updated tools that incorporate state-of-the-art failure modes, geotechnical concepts and new safety assessment techniques. For instance, for gravity dams one common design approach considers the sliding through the dam-foundation interface, using a simple linear Mohr-Coulomb failure criterion with constant friction angle and cohesion parameters. But the influence of aspects such as the persistence of joint sets in the rock mass below the dam foundation; of the influence of others failure criteria proposed for rock joint and rock masses (e.g. the Hoek-Brown criterion); or the volumetric strains that occur during plastic failure of rock masses (i.e., the influence of dilatancy) are often no considered during the original dam design. In this context, an analytical methodology is proposed herein to assess the sliding stability of concrete dams, considering an extended failure mechanism in its rock foundation, which is characterized by the presence of an inclined, and impersistent joint set. In particular, the possibility of a preexisting sub-horizontal and impersistent joint set is considered, with a potential failure surface that could extend through the rock mass; the safety factor is therefore computed using a combination of strength along the rock joint (using the nonlinear Barton and Choubey (1977) and Barton and Bandis (1990) failure criteria) and along the rock mass (using the nonlinear failure criterion of Hoek and Brown (1980) in its generalized expression from Hoek et al. (2002)). The proposed methodology also considers the influence of a non-associative flow rule that has been incorporated using a (constant) dilation angle (Hoek and Brown 1997). The newly proposed analytical methodology is used to assess the dam stability conditions, employing for this purpose the deterministic and probabilistic models, resulting in the sliding safety factor and the probability of failure respectively. The deterministic model, implemented in MATLAB, is validated using numerical solution computed with the finite difference code FLAC 6.0. The proposed deterministic model provides results that are very similar to those computed with FLAC; however, since the new formulation can be implemented in a spreadsheet, the computational cost of the proposed model is significantly smaller, hence allowing to more easily conduct parametric analyses of the influence of the different input parameters on the dam’s safety. Once the model is validated, parametric analyses are conducting using the main parameters that describe the dam’s foundation. From this study, the impact of the more influential parameters on the sliding stability analysis is obtained and the error of considering the flow rule is assessed. The probability of failure is obtained employing the First Order Reliability Method (FORM). The probabilistic model is then validated using the Monte Carlo simulation method. Results obtained using both methodologies show good agreement for cases in which the rock mass has a nonassociate flow rule. For cases with an associated flow rule errors between 0.70% and 66% are obtained, so that the better adjustments are obtained for cases with, or close to, limit equilibrium conditions. The main advantage of FORM on sliding stability analyses of gravity dams is its computational efficiency, so that Monte Carlo simulations require at least 4 hours on each execution, whereas FORM requires only 1 to 3 minutes on each execution.
Resumo:
Debido al gran auge en las comunicaciones móviles, los terminales cada vez son más finos a la par que más grandes, pues cada vez los usuarios quieren tener terminales delgados pero con pantallas mayores. Por ello, el objetivo principal del proyecto es aprender y analizar las antenas usadas en los teléfonos móviles, concretamente las antenas impresas. En los últimos años con el aumento de los servicios ofrecidos por los terminales móviles se han ido añadiendo distintas bandas de frecuencia en las que trabajan estos terminales. Por ello, ha sido necesario diseñar antenas que no funcionen únicamente en una banda de frecuencia, sino antenas multibanda, es decir, antenas capaces de funcionar en las distintas bandas de frecuencias. Para realizar las simulaciones y pruebas de este proyecto se utilizó el software FEKO, tanto el CAD FEKO como el POST FEKO. El CAD FEKO se empleó para el diseño de la antena, mientras que el POST FEKO sirvió para analizar las simulaciones. Por último, hay que añadir que FEKO aunque está basado en el Método de los Momentos (MoM) es una herramienta que puede utilizar varios métodos numéricos. Además del MoM puede utilizar otras técnicas (por separado o hibridizadas) como son el Métodos de Elementos Finitos (FEM), Óptica Física (PO), Lanzamiento de rayos con Óptica Geométrica (RL-GO), Teoría Uniforme de la Difracción (UTD), Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD), ... ABSTRACT. Because of the boom in mobile communications, terminals are thinner and so large, because users want to thin terminals but with large screens. Therefore, the main objective of the project is to learn and analyse the antennas used in mobile phones, specifically printed antennas. In recent years with the rise of the services offered by mobile terminals have been adding different frequency bands in which these terminals work. For that reason, it has been necessary to design antennas that not work only in a frequency band, but multiband antennas, i.e., antennas capable of operating in different frequency bands. For performing simulations and testing in this project will be used software FEKO, as the CAD FEKO and POST FEKO. The CAD FEKO is used for the design of the antenna, whereas the POST FEKO is used for simulation analysis. Finally, it has to add that FEKO is based on the Method of Moments (MoM) but also it can use several numerical methods. Besides the MoM, FEKO can use other techniques (separated or hybridized) such as the Finite Element Method (FEM), Physical Optics (PO), Ray-launching Geometrical Optics (RL-GO), Uniform Theory of Diffraction (UTD), Finite Difference Time Domain (FDTD) …
Resumo:
El objetivo de esta tesis doctoral es la investigación del nuevo concepto de pinzas fotovoltaicas, es decir, del atrapamiento, ordenación y manipulación de partículas en las estructuras generadas en la superficie de materiales ferroeléctricos mediante campos fotovoltaicos o sus gradientes. Las pinzas fotovoltaicas son una herramienta prometedora para atrapar y mover las partículas en la superficie de un material fotovoltaico de una manera controlada. Para aprovechar esta nueva técnica es necesario conocer con precisión el campo eléctrico creado por una iluminación específica en la superficie del cristal y por encima de ella. Este objetivo se ha dividido en una serie de etapas que se describen a continuación. La primera etapa consistió en la modelización del campo fotovoltaico generado por iluminación no homogénea en substratos y guías de onda de acuerdo al modelo de un centro. En la segunda etapa se estudiaron los campos y fuerzas electroforéticas y dielectroforéticas que aparecen sobre la superficie de substratos iluminados inhomogéneamente. En la tercera etapa se estudiaron sus efectos sobre micropartículas y nanopartículas, en particular se estudió el atrapamiento superficial determinando las condiciones que permiten el aprovechamiento como pinzas fotovoltaicas. En la cuarta y última etapa se estudiaron las configuraciones más eficientes en cuanto a resolución espacial. Se trabajó con distintos patrones de iluminación inhomogénea, proponiéndose patrones de iluminación al equipo experimental. Para alcanzar estos objetivos se han desarrollado herramientas de cálculo con las cuales obtenemos temporalmente todas las magnitudes que intervienen en el problema. Con estas herramientas podemos abstraernos de los complicados mecanismos de atrapamiento y a partir de un patrón de luz obtener el atrapamiento. Todo el trabajo realizado se ha llevado a cabo en dos configuraciones del cristal, en corte X ( superficie de atrapamiento paralela al eje óptico) y corte Z ( superficie de atrapamiento perpendicular al eje óptico). Se ha profundizado en la interpretación de las diferencias en los resultados según la configuración del cristal. Todas las simulaciones y experimentos se han realizado utilizando como soporte un mismo material, el niobato de litio, LiNbO3, con el f n de facilitar la comparación de los resultados. Este hecho no ha supuesto una limitación en los resultados pues los modelos no se limitan a este material. Con respecto a la estructura del trabajo, este se divide en tres partes diferenciadas que son: la introducción (I), la modelización del atrapamiento electroforético y dielectroforético (II) y las simulaciones numéricas y comparación con experimentos (III). En la primera parte se fijan las bases sobre las que se sustentarán el resto de las partes. Se describen los efectos electromagnéticos y ópticos a los que se hará referencia en el resto de los capítulos, ya sea por ser necesarios para describir los experimentos o, en otros casos, para dejar constancia de la no aparición de estos efectos para el caso en que nos ocupa y justificar la simplificación que en muchos casos se hace del problema. En esta parte, se describe principalmente el atrapamiento electroforético y dielectroforético, el efecto fotovoltaico y las propiedades del niobato de litio por ser el material que utilizaremos en experimentos y simulaciones. Así mismo, como no debe faltar en ninguna investigación, se ha analizado el state of the art, revisando lo que otros científicos del campo en el que estamos trabajando han realizado y escrito con el fin de que nos sirva de cimiento a la investigación. Con el capítulo 3 finalizamos esta primera parte describiendo las técnicas experimentales que hoy en día se están utilizando en los laboratorios para realizar el atrapamiento de partículas mediante el efecto fotovoltaico, ya que obtendremos ligeras diferencias en los resultados según la técnica de atrapamiento que se utilice. En la parte I I , dedicada a la modelización del atrapamiento, empezaremos con el capítulo 4 donde modelizaremos el campo eléctrico interno de la muestra, para a continuación modelizar el campo eléctrico, los potenciales y las fuerzas externas a la muestra. En capítulo 5 presentaremos un modelo sencillo para comprender el problema que nos aborda, al que llamamos Modelo Estacionario de Separación de Carga. Este modelo da muy buenos resultados a pesar de su sencillez. Pasamos al capítulo 6 donde discretizaremos las ecuaciones que intervienen en la física interna de la muestra mediante el método de las diferencias finitas, desarrollando el Modelo de Distribución de Carga Espacial. Para terminar esta parte, en el capítulo 8 abordamos la programación de las modelizaciones presentadas en los anteriores capítulos con el fn de dotarnos de herramientas para realizar las simulaciones de una manera rápida. En la última parte, III, presentaremos los resultados de las simulaciones numéricas realizadas con las herramientas desarrolladas y comparemos sus resultados con los experimentales. Fácilmente podremos comparar los resultados en las dos configuraciones del cristal, en corte X y corte Z. Finalizaremos con un último capítulo dedicado a las conclusiones, donde resumiremos los resultados que se han ido obteniendo en cada apartado desarrollado y daremos una visión conjunta de la investigación realizada. ABSTRACT The aim of this thesis is the research of the new concept of photovoltaic or optoelectronic tweezers, i.e., trapping, management and manipulation of particles in structures generated by photovoltaic felds or gradients on the surface of ferroelectric materials. Photovoltaic tweezers are a promising tool to trap and move the particles on the surface of a photovoltaic material in a monitored way. To take advantage of this new technique is necessary to know accurately the electric field created by a specifc illumination in the crystal surface and above it. For this purpose, the work was divided into the stages described below. The first stage consisted of modeling the photovoltaic field generated by inhomogeneous illumination in substrates and waveguides according to the one-center model. In the second stage, electrophoretic and dielectrophoretic fields and forces appearing on the surface of substrates and waveguides illuminated inhomogeneously were studied. In the third stage, the study of its effects on microparticles and nanoparticles took place. In particular, the trapping surface was studied identifying the conditions that allow its use as photovoltaic tweezers. In the fourth and fnal stage the most efficient configurations in terms of spatial resolution were studied. Different patterns of inhomogeneous illumination were tested, proposing lightning patterns to the laboratory team. To achieve these objectives calculation tools were developed to get all magnitudes temporarily involved in the problem . With these tools, the complex mechanisms of trapping can be simplified, obtaining the trapping pattern from a light pattern. All research was carried out in two configurations of crystal; in X section (trapping surface parallel to the optical axis) and Z section (trapping surface perpendicular to the optical axis). The differences in the results depending on the configuration of the crystal were deeply studied. All simulations and experiments were made using the same material as support, lithium niobate, LiNbO3, to facilitate the comparison of results. This fact does not mean a limitation in the results since the models are not limited to this material. Regarding the structure of this work, it is divided into three clearly differentiated sections, namely: Introduction (I), Electrophoretic and Dielectrophoretic Capture Modeling (II) and Numerical Simulations and Comparison Experiments (III). The frst section sets the foundations on which the rest of the sections will be based on. Electromagnetic and optical effects that will be referred in the remaining chapters are described, either as being necessary to explain experiments or, in other cases, to note the non-appearance of these effects for the present case and justify the simplification of the problem that is made in many cases. This section mainly describes the electrophoretic and dielectrophoretic trapping, the photovoltaic effect and the properties of lithium niobate as the material to use in experiments and simulations. Likewise, as required in this kind of researches, the state of the art have been analyzed, reviewing what other scientists working in this field have made and written so that serve as a foundation for research. With chapter 3 the first section finalizes describing the experimental techniques that are currently being used in laboratories for trapping particles by the photovoltaic effect, because according to the trapping technique in use we will get slightly different results. The section I I , which is dedicated to the trapping modeling, begins with Chapter 4 where the internal electric field of the sample is modeled, to continue modeling the electric field, potential and forces that are external to the sample. Chapter 5 presents a simple model to understand the problem addressed by us, which is called Steady-State Charge Separation Model. This model gives very good results despite its simplicity. In chapter 6 the equations involved in the internal physics of the sample are discretized by the finite difference method, which is developed in the Spatial Charge Distribution Model. To end this section, chapter 8 is dedicated to program the models presented in the previous chapters in order to provide us with tools to perform simulations in a fast way. In the last section, III, the results of numerical simulations with the developed tools are presented and compared with the experimental results. We can easily compare outcomes in the two configurations of the crystal, in section X and section Z. The final chapter collects the conclusions, summarizing the results that were obtained in previous sections and giving an overview of the research.
Resumo:
This paper presents an overview of depth averaged modelling of fast catastrophic landslides where coupling of solid skeleton and pore fluid (air and water) is important. The first goal is to show how Biot-Zienkiewicz models can be applied to develop depth integrated, coupled models. The second objective of the paper is to consider a link which can be established between rheological and constitutive models. Perzyna´s viscoplasticity can be considered a general framework within which rheological models such as Bingham and cohesive frictional fluids can be derived. Among the several alternative numerical models, we will focus here on SPH which has not been widely applied by engineers to model landslide propagation. We propose an improvement, based on combining Finite Difference meshes associated to SPH nodes to describe pore pressure evolution inside the landslide mass. We devote a Section to analyze the performance of the models, considering three sets of tests and examples which allows to assess the model performance and limitations: (i) Problems having an analytical solution, (ii) Small scale laboratory tests, and (iii) Real cases for which we have had access to reliable information
Resumo:
In a general situation a non-uniform velocity field gives rise to a shift of the otherwise straight acoustic pulse trajectory between the transmitter and receiver transducers of a sonic anemometer. The aim of this paper is to determine the effects of trajectory shifts on the velocity as measured by the sonic anemometer. This determination has been accomplished by developing a mathematical model of the measuring process carried out by sonic anemometers; a model which includes the non-straight trajectory effect. The problem is solved by small perturbation techniques, based on the relevant small parameter of the problem, the Mach number of the reference flow, M. As part of the solution, a general analytical expression for the deviations of the computed measured speed from the nominal speed has been obtained. The correction terms of both the transit time and of the measured speed are of M 2 order in rotational velocity field. The method has been applied to three simple, paradigmatic flows: one-directional horizontal and vertical shear flows, and mixed with a uniform horizontal flow.
Resumo:
El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de resistencia al avance de buques y estructuras flotantes. La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias finitas desarrollados para la condición de superficie libre. Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos con olas. También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta numérica basada de cálculo de estructuras con MEF para problemas de interacción fluido-estructura, otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques internos para problemas acoplados de comportamiento en la mar con “sloshing”. Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los campos de la ingeniería naval, oceánica, y energías renovables marinas. ABSTRACT The objective of this thesis is the research on numerical algorithms to develop numerical tools to simulate seakeeping problems as well as wave resistance problems of ships and floating structures. The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, streamline integration, and finite difference method tailored for solving the free surface boundary condition. It has been developed numerical tools to solve solid body dynamics of multibody systems with body links across them. This tool has been integrated with the wave diffraction-radiation solver to solve wave-body interaction problems. Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-physics problems. In particular, it has been performed coupling with a MEF structural solver to solve fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating internal flows in tanks to solve couple seakeeping-sloshing problems. Numerical simulations have been carried out to validate and verify the developed algorithms, as well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore renewable energy.
Resumo:
La presente tesis revisa y analiza algunos aspectos fundamentales relativos al comportamiento de los sensores basados en resonadores piezoeléctricos TSM (Thickness Shear Mode), así como la aplicación de los mismos al estudio y caracterización de dos medios viscoelásticos de gran interés: los fluidos magnetoreológicos y los biofilms microbianos. El funcionamiento de estos sensores está basado en la medida de sus propiedades resonantes, las cuales varían al entrar en contacto con el material que se quiere analizar. Se ha realizado un análisis multifrecuencial, trabajando en varios modos de resonancia del transductor, en algunas aplicaciones incluso de forma simultánea (excitación pulsada). Se han revisado fenómenos como la presencia de microcontactos en la superficie del sensor y la resonancia de capas viscoelásticas de espesor finito, que pueden afectar a los sensores de cuarzo de manera contraria a lo que predice la teoría convencional (Sauerbrey y Kanazawa), pudiéndonos llevar a incrementos positivos de la frecuencia de resonancia. Además, se ha estudiado el efecto de una deposición no uniforme sobre el resonador piezoeléctrico. Para ello se han medido deposiciones de poliuretano, modelándose la respuesta del resonador con estas deposiciones mediante FEM. El modelo numérico permite estudiar el comportamiento del resonador al modificar distintas variables geométricas (espesor, superficie, no uniformidad y zona de deposición) de la capa depositada. Se ha demostrado que para espesores de entre un cuarto y media longitud de onda aproximadamente, una capa viscoelástica no uniforme sobre la superficie del sensor, amplifica el incremento positivo del desplazamiento de la frecuencia de resonancia en relación con una capa uniforme. Se ha analizado también el patrón geométrico de la sensibilidad del sensor, siendo también no uniforme sobre su superficie. Se han aplicado sensores TSM para estudiar los cambios viscoelásticos que se producen en varios fluidos magneto-reológicos (FMR) al aplicarles distintos esfuerzos de cizalla controlados por un reómetro. Se ha podido ver que existe una relación directa entre diversos parámetros reológicos obtenidos con el reómetro (fuerza normal, G’, G’’, velocidad de deformación, esfuerzo de cizalla…) y los parámetros acústicos, caracterizándose los FMR tanto en ausencia de campo magnético, como con campo magnético aplicado a distintas intensidades. Se han estudiado las ventajas que aporta esta técnica de medida sobre la técnica basada en un reómetro comercial, destacando que se consigue caracterizar con mayor detalle algunos aspectos relevantes del fluido como son la deposición de partículas (estabilidad del fluido), el proceso de ruptura de las estructuras formadas en los FMR tanto en presencia como en ausencia de campo magnético y la rigidez de los microcontactos que aparecen entre partículas y superficies. También se han utilizado sensores de cuarzo para monitorear en tiempo real la formación de biofilms de Staphylococcus epidermidis y Eschericia coli sobre los propios resonadores de cristal de cuarzo sin ningún tipo de recubrimiento, realizándose ensayos con cepas que presentan distinta capacidad de producir biofilm. Se mostró que, una vez que se ha producido una primera adhesión homogénea de las bacterias al sustrato, podemos considerar el biofilm como una capa semi-infinita, de la cual el sensor de cuarzo refleja las propiedades viscoelásticas de la región inmediatamente contigua al resonador, no siendo sensible a lo que sucede en estratos superiores del biofilm. Los experimentos han permitido caracterizar el módulo de rigidez complejo de los biofilms a varias frecuencias, mostrándose que el parámetro característico que indica la adhesión de un biofilm tanto en el caso de S. epidermidis como de E. coli, es el incremento de G’ (relacionado con la elasticidad o rigidez de la capa), el cual viene ligado a un incremento de la frecuencia de resonancia del sensor. ABSTRACT This thesis reviews and analyzes some key aspects of the behavior of sensors based on piezoelectric resonators TSM (Thickness Shear Mode) and their applications to the study and characterization in two viscoelastic media of great interest: magnetorheological fluids and microbial biofilms. The operation of these sensors is based on the analysis of their resonant properties that vary in contact with the material to be analyzed. We have made a multi-frequency analysis, working in several modes of resonance of the transducer, in some applications even simultaneously (by impulse excitation). We reviewed some phenomena as the presence of micro-contacts on the sensor surface and the resonance of viscoelastic layers of finite thickness, which can affect quartz sensors contrary to the conventional theory predictions (Sauerbrey and Kanazawa), leading to positive resonant frequency shifts. In addition, we studied the effect of non-uniform deposition on the piezoelectric resonator. Polyurethane stools have been measured, being the resonator response to these depositions modeled by FEM. The numerical model allows studying the behavior of the resonator when different geometric variables (thickness, surface non-uniformity and deposition zone) of the deposited layer are modified. It has been shown that for thicknesses between a quarter and a half of a wavelength approximately, non-uniform deposits on the sensor surface amplify the positive increase of the resonance frequency displacement compared to a uniform layer. The geometric pattern of the sensor sensitivity was also analyzed, being also non-uniform over its surface. TSM sensors have been applied to study the viscoelastic changes occurring in various magneto-rheological fluids (FMR) when subjected to different controlled shear stresses driven by a rheometer. It has been seen that there is a direct relationship between various rheological parameters obtained with the rheometer (normal force, G', G'', stress, shear rate ...) and the acoustic parameters, being the FMR characterized both in the absence of magnetic field, and when the magnetic field was applied at different intensities. We have studied the advantages of this technique over the characterization methods based on commercial rheometers, noting that TSM sensors are more sensitive to some relevant aspects of the fluid as the deposition of particles (fluid stability), the breaking process of the structures formed in the FMR both in the presence and absence of magnetic field, and the rigidity of the micro-contacts appearing between particles and surfaces. TSM sensors have also been used to monitor in real time the formation of biofilms of Staphylococcus epidermidis and Escherichia coli on the quartz crystal resonators themselves without any coating, performing tests with strains having different ability to produce biofilm. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to what is happening in upper layers of the biofilm. The experiments allow the evaluation of the biofilm complex stiffness module at various frequencies, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of both S. epidermidis and E. coli, is an increased G' (related to the elasticity or stiffness of the layer), which is linked to an increase in the resonance frequency of the sensor.
Resumo:
In this paper a model for the measuring process of sonic anemometers (ultrasound pulse based) is presented. The differential equations that describe the travel of ultrasound pulses are solved in the general case of non-steady, non-uniform atmospheric flow field. The concepts of instantaneous line-average and travelling pulse-referenced average are established and employed to explain and calculate the differences between the measured turbulent speed (travelling pulse-referenced average) and the line-averaged one. The limit k1l=1 established by Kaimal in 1968, as the maximum value which permits the neglect of the influence of the sonic measuring process on the measurement of turbulent components is reviewed here. Three particular measurement cases are analysed: A non-steady, uniform flow speed field, a steady, non-uniform flow speed field and finally an atmospheric flow speed field. In the first case, for a harmonic time-dependent flow field, Mach number, M (flow speed to sound speed ratio) and time delay between pulses have revealed themselves to be important parameters in the behaviour of sonic anemometers, within the range of operation. The second case demonstrates how the spatial non-uniformity of the flow speed field leads to an influence of the finite transit time of the pulses (M≠0) even in the absence of non-steady behaviour of the wind speed. In the last case, a model of the influence of the sonic anemometer processes on the measurement of wind speed spectral characteristics is presented. The new solution is compared to the line-averaging models existing in the literature. Mach number and time delay significantly distort the measurement in the normal operational range. Classical line averaging solutions are recovered when Mach number and time delay between pulses go to zero in the new proposed model. The results obtained from the mathematical model have been applied to the calculation of errors in different configurations of practical interest, such as an anemometer located on a meteorological mast and the transfer function of a sensor in an atmospheric wind. The expressions obtained can be also applied to determine the quality requirements of the flow in a wind tunnel used for ultrasonic anemometer calibrations.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.