39 resultados para nematic liquid crystals
Resumo:
Conductive nanoparticles, especially elongated ones such as carbon nanotubes, dramatically modify the electrical behavior of liquid crystal cells. These nanoparticles are known to reorient with liquid crystals in electric fields, causing significant variations of conductivity at minute concentrations of tens or hundreds ppm. The above notwithstanding, impedance spectroscopy of doped cells in the frequency range customarily employed by liquid crystal devices, 100 Hz?10 kHz, shows a relatively simple resistor/capacitor response where the components of the cell can be univocally assigned to single components of the electrical equivalent circuit. However, widening the frequency range up to 1 MHz or beyond reveals a complex behavior that cannot be explained with the same simple EEC. Moreover, the system impedance varies with the application of electric fields, their effect remaining after removing the field. Carbon nanotubes are reoriented together with liquid crystal reorientation when applying voltage, but barely reoriented back upon liquid crystal relaxation once the voltage is removed. Results demonstrate a remarkable variation in the impedance of the dielectric blend formed by liquid crystal and carbon nanotubes, the irreversible orientation of the carbon nanotubes and possible permanent contacts between electrodes.
Resumo:
Many photonic devices are based on waveguides (WG) whose optical properties can be externally modified. These active WGs are usually obtained with electrooptic materials in either the propagating film (core) or the substrate (cladding). In the second case, the WG tunability is based on the interaction of the active material with the evanescent field of the propagating beam.Liquid crystals (LCs) are an excellent choice as electrooptic active materials since they feature high birefringence, low switching voltage, and relatively simple manufacturing. In this work, we have explored alternative ways to prepare WGs of arbitrary shapes avoiding photolithographic steps. To do this, we have employed a UV laser unit (Spectra Physics)attached to an xyzCNC system mounted on an optical bench. The laser power is 300mW, the spot size can be reduced slightly below 1 µm, and the electromechanicalpositioning is well below that number.Different photoresinshave been evaluated for curing time and uniformity; the results have been compared to equivalent WGs realized by standard photolithographic procedures. Best results have been obtained with several kinds of NOA adhesives (Norland Products Inc.) and SU8 (Microchem). NOA81 optical adhesive has been employed by several groups for the preparation ofmicrochannels [1] and microfluidic systems[2]. In our case, several NOAs having different refractive indices have been tested in order to optimize light coupling and guiding. The adhesive is spinnedonto a substrate, and a number of segmented WGs are written with the laser system. The laser power is attenuated 20 dB. Then the laser spot is swept a number of times (from 1 to 900) on every segment. It has been found that, for example, the optimum number of sweeps for NOA81 is 30-70 times (center of the figure) under these conditions. The WG dimensions obtained with this procedure are about 7 µm high and 12 µm wide.
Resumo:
A method of opto-optical modulation in liquid crystals is reported. An Ar+-laser beam is employed to modulate a second He–Ne laser. The highest frequency achieved was 1.5 × 103 pulses per second with input modulating powers smaller than 10 mW. A homeotropic N-(p-methoxybenzylidene)-p-butylaniline liquid-crystal cell was employed as the nonlinear medium.
Resumo:
We report a new hard-particle model system consisting of hard cylinders, we have determined the geometrical conditions that let us know whether or not two given cylinders overlap. In addition we have carried out Monte Carlo simulations sampling the canonical ensemble on this system, the numerical results indicate that this system exhibits mesomorphic behaviour.
Resumo:
As we have shown,several output conditions can be obtained from a hybrid optical bistable device when twisted nematic liquid crystal cells are employed as nonlinear elements.
Resumo:
In this paper we describe a twisted nematic liquid crystal (TNLC) device structure with optical feedback capable of bistable operation and optical memory. Its structure is the conventional one as employed in hybrid optical bistability.
Resumo:
The influence of six antiferroelectric compounds on the helical pitch of mixture W-1000, which was reported as long pitch orthoconic antiferroelectric liquid crystalline mixture, was checked by spectrophotometry and polarimetry methods. The electro-optical properties for the mixture with the longest pitch were measured. An improvement in electro-optical response due to the long pitch is reported. The novelty in electro-optical properties is the good symmetry response.
Resumo:
A new method of light modulation is reported. This method is based on the electro-optical properties of nematic materials and on the use of a new wedge structure. The advantages of this structure are the possibility of modulating nonpolarized light and the improved signal-to-noise ratio. The highest modulating frequency obtained is 25 kHz.
Resumo:
In this letter , we report a new method for óptical switching based on the electro-optical properties of liquid crystal materials and, in particular, of the nematic type. The basis of this new method is the use of twisted wedge structure that has not been reported before elsewhere. In the past several years , great efforts in integrated optics have been made to develop optical switching devices with fast speed by using electro-optic, acousto-optic or magneto -optic materials. A mechanically operated óptical switch made of grade-index rod 1enses and e1ectromagnets has been proposed too . Switches of this kind include one input and two output waveguides and, depending on the app1ied voltage, one incident light on the switch exits either in one or another of the two output waveguides.