64 resultados para modelling the robot
Resumo:
The aim of this paper is to clarify the role played by the most commonly used viscous terms in simulating viscous laminar flows using the weakly compressible approach in the context of smooth particle hydrodynamics (WCSPH). To achieve this, Takeda et al. (Prog. Theor. Phys. 1994; 92(5):939–960), Morris et al. (J. Comput. Phys. 1997; 136:214–226) and Monaghan–Cleary–Gingold's (Appl. Math. Model. 1998; 22(12):981–993; Monthly Notices of the Royal Astronomical Society 2005; 365:199–213) viscous terms will be analysed, discussing their origins, structures and conservation properties. Their performance will be monitored with canonical flows of which related viscosity phenomena are well understood, and in which boundary effects are not relevant. Following the validation process of three previously published examples, two vortex flows of engineering importance have been studied. First, an isolated Lamb–Oseen vortex evolution where viscous effects are dominant and second, a pair of co-rotating vortices in which viscous effects are combined with transport phenomena. The corresponding SPH solutions have been compared to finite-element numerical solutions. The SPH viscosity model's behaviour in modelling the viscosity related effects for these canonical flows is adequate
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
The solubility parameters of two SBS commercial rubbers with different structures (lineal and radial), and with slightly different styrene content have been determined by inverse gas chromatography technique. The Flory–Huggins interaction parameters of several polymer–solvent mixtures have also been calculated. The influence of the polymer composition, the solvent molecular weight and the temperature over these parameters have been discussed; besides, these parameters have been compared with previous ones, obtained by intrinsic viscosity measurements. From the Flory–Huggins interaction parameters, the infinite dilution activity coefficients of the solvents have been calculated and fitted to the well-known NRTL model. These NRTL binary interaction parameters have a great importance in modelling the separation steps in the process of obtaining the rubber.
Resumo:
Resumen La investigación descrita en esta memoria se enmarca en el campo de la lógica borro¬sa. Más concretamente, en el estudio de la incompatibilidad, de la compatibilidad y de la suplementaridad en los conjuntos borrosos y en los de Atanassov. En este orden de ideas, en el primer capítulo, se construyen, tanto de forma directa como indirecta, funciones apropiadas para medir la incompatibilidad entre dos conjuntos borro-sos. Se formulan algunos axiomas para modelizar la continuidad de dichas funciones, y se determina si las medidas propuestas, y otras nuevas que se introducen, verifican algún tipo de continuidad. Finalmente, se establece la noción de conjuntos borrosos compatibles, se introducen axiomas para medir esta propiedad y se construyen algunas medidas de compa¬tibilidad. El segundo capítulo se dedica al estudio de la incompatibilidad y de la compatibilidad en el campo de los conjuntos de Atanassov. Así, en primer lugar, se presenta una definición axiomática de medida de incompatibilidad en este contexto. Después, se construyen medidas de incompatibilidad por medio de los mismos métodos usados en el caso borroso. Además, se formulan axiomas de continuidad y se determina el tipo de continuidad de las medidas propuestas. Finalmente, se sigue un camino similar al caso borroso para el estudio de la compatibilidad. En el tercer capítulo, después de abordar la antonimia de conjuntos borrosos y de conjuntos de Atanassov, se formalizan las nociones de conjuntos suplementarios en estos dos entornos y se presenta, en ambos casos, un método para obtener medidas de suplementaridad a partir de medidas de incompatibilidad vía antónimos. The research described in this report pertains to the field of fuzzy logic and specifically studies incompatibility, compatibility and supplementarity in fuzzy sets and Atanassov's fuzzy sets. As such is the case, Chapter 1 describes both the direct and indirect construction of appropriate functions for measuring incompatibility between two fuzzy sets. We formulate some axioms for modelling the continuity of functions and determine whether the proposed and other measures introduced satisfy any type of continuity. Chapter 2 focuses on the study of incompatibility and compatibility in the field of Ata¬nassov's fuzzy sets. First, we present an axiomatic definition of incompatibility measure in this field. Then, we use the same methods to construct incompatibility measures as in the fuzzy case. Additionally, we formulate continuity axioms and determine the type of conti¬nuity of the proposed measures. Finally, we take a similar approach as in the fuzzy case to the study of compatibility. After examining the antonymy of fuzzy sets and Atanassov's sets, Chapter 3 formalizes the notions of supplementary sets in these two domains, and, in both cases, presents a method for obtaining supplementarity measures from incompatibility measures via antonyms.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
We study a system of three partial differential equations modelling the spatiotemporal behaviour of two competitive populations of biological species both of which are attracted chemotactically by the same signal substance. For a range of the parameters the system possesses a uniquely determined spatially homogeneous positive equilibrium (u?, v?) globally asymptotically stable within a certain nonempty range of the logistic growth coefficients.
Resumo:
The numerical analysis of certain safety related problems presents serious difficulties, since the large number of components present leads to huge finite elementmodels that can only be solved by using large and expensive computers or by making rough approaches to the problem. Tangling, or clashing, in the turbine of a jet engine airplane is an example of such problems. This is caused by the crash and friction between rotor and stator blades in the turbine after an eventual shaft failure. When facing the study of an event through numerical modelling, the accurate simulation of this problem would require the engineer to model all the rotor and stator blades existing in the turbine stage, using a small element size in all pieces. Given that the number of stator and rotor blades is usually around 200, such simulations would require millions of elements. This work presents a new numerical methodology, specifically developed for the accurate modelling of the tangling problem that, depending on the turbine configuration, is able to reduce the number of nodes up to an order of magnitude without losing accuracy. The methodology, which benefits from the cyclic configuration of turbines, is successfully applied to the numerical analysis of a hypothetical tangling event in a turbine, providing valuable data such as the rotating velocity decrease of the turbine, the braking torque and the damage suffered by the blades. The methodology is somewhat general and can be applied to any problem in which damage caused by the interaction between a rotating and static piece is to be analysed.
Resumo:
This paper presents the development of a new parallel robot designed for helping with bone milling surgeries. The robot is a small modular wrist with 2 active degrees of freedom, and it is proposed to be used as an orientation device located at the end of a robotic arm designed for bone milling processes. A generic kinematic geometry is proposed for this device. This first article shows the developments on the workspace optimization and the analysis of the force field required to complete a reconstruction of the inferior jawbone. The singularities of the mechanism are analyzed, and the actuator selection is justified with the torque requirements and the study of the force space. The results obtained by the simulations allow building a first prototype using linear motors. Bone milling experiment video is shown as additional material.
Resumo:
In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.
Resumo:
We present ARGoS, a novel open source multi-robot simulator. The main design focus of ARGoS is the real-time simulation of large heterogeneous swarms of robots. Existing robot simulators obtain scalability by imposing limitations on their extensibility and on the accuracy of the robot models. By contrast, in ARGoS we pursue a deeply modular approach that allows the user both to easily add custom features and to allocate computational resources where needed by the experiment. A unique feature of ARGoS is the possibility to use multiple physics engines of different types and to assign them to different parts of the environment. Robots can migrate from one engine to another transparently. This feature enables entirely novel classes of optimizations to improve scalability and paves the way for a new approach to parallelism in robotics simulation. Results show that ARGoS can simulate about 10,000 simple wheeled robots 40% faster than real-time.
Resumo:
In this paper we describe a new promising procedure to model hyperelastic materials from given stress-strain data. The main advantage of the proposed method is that the user does not need to have a relevant knowledge of hyperelasticity, large strains or hyperelastic constitutive modelling. The engineer simply has to prescribe some stress strain experimental data (whether isotropic or anisotropic) in also user prescribed stress and strain measures and the model almost exactly replicates the experimental data. The procedure is based on the piece-wise splines model by Sussman and Bathe and may be easily generalized to transversely isotropic and orthotropic materials. The model is also amenable of efficient finite element implementation. In this paper we briefly describe the general procedure, addressing the advantages and limitations. We give predictions for arbitrary ?experimental data? and also give predictions for actual experiments of the behaviour of living soft tissues. The model may be also implemented in a general purpose finite element program. Since the obtained strain energy functions are analytic piece-wise functions, the constitutive tangent may be readily derived in order to be used for implicit static problems, where the equilibrium iterations must be performed and the material tangent is needed in order to preserve the quadratic rate of convergence of Newton procedures.
Resumo:
The paper presents research conducted in the Flow workpackage of the EU funded UPWIND project which focuses on improving models for flow within and downwind of large wind farms in complex terrain and offshore. The main activity is modelling the behaviour of wind turbine wakes in order to improve power output predictions.
Resumo:
Purpose – Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal, configurations on the hexapod robotic platform SILO6. Design/methodology/approach – Dynamic simulation of this hexapod is used to develop a set of rules that optimize energy expenditure in both configurations. Later, through a theoretical analysis of energy consumption and experimental measurements in the real platform SILO6, a configuration is chosen. Findings – It is widely accepted that the mammal configuration in statically stable walking machines is better for supporting high loads, while the insect configuration is considered to be better for improving mobility. However, taking into account the leg dynamics and not only the body weight, different results are obtained. In a mammal configuration, supporting body weight accounts for 5 per cent of power consumption while leg dynamics accounts for 31 per cent. Originality/value – As this paper demonstrates, the energy expended when the robot walks along a straight and horizontal line is the same for both insect and mammal configurations, while power consumption during crab walking in an insect configuration exceeds power consumption in the mammal configuration.
Resumo:
In this Master’s Thesis a new Distributed Award Protocol (DAP) for robot communication and cooperation is presented. Task assignment (contract awarding) is done dynamically with contracts assigned to robots based upon the best bid received. Instead of having a manager and a contractor it is proposed a fully distributed bidding/awarding mechanism without a distinguished master. The best bidding robots are awarded with contract for execution. The contractors make decisions locally. This brings the following benefits: no communication bottleneck, low computational power requirement, increased robustness. DAP can handle multitasking. Tasks can be injected into system during the execution of already allocated tasks. As tasks have priorities, in the next cycle after taking into account actual bid parameters of all robots, tasks can be re-allocated. The aim is to minimize a global cost function which is a compromise between cost of task execution and cost of resources usage. Information about tasks and bid values is spread among robots with the use of a Round Robin Route, which is a novel solution proposed in this work. This method allows also identifying failed robots. Such failed robot is eliminated from the list of awarded robots and its replacement is found so the task is still executed by a team. If the failure of a robot was temporary (e.g. communication noise) and the robot can recover, it can again participate in the next bidding/awarding process. Using a bidding/awarding mechanism allows robots to dynamically relocate among tasks. This is also contributes to system robustness. DAP was evaluated through multiple experiments done in the multi-robot simulation system. Various scenarios were tested to check the idea of the main algorithm. Different failures of robots (communication failures, partial hardware malfunctions) were simulated and observations were made regarding how DAP recovers from them. Also the DAP flexibility to environment changes was watched. The experiments in the simulated environment confirmed the above features of DAP.