64 resultados para linked open data
Resumo:
In spite of the increasing presence of Semantic Web Facilities, only a limited amount of the available resources in the Internet provide a semantic access. Recent initiatives such as the emerging Linked Data Web are providing semantic access to available data by porting existing resources to the semantic web using different technologies, such as database-semantic mapping and scraping. Nevertheless, existing scraping solutions are based on ad-hoc solutions complemented with graphical interfaces for speeding up the scraper development. This article proposes a generic framework for web scraping based on semantic technologies. This framework is structured in three levels: scraping services, semantic scraping model and syntactic scraping. The first level provides an interface to generic applications or intelligent agents for gathering information from the web at a high level. The second level defines a semantic RDF model of the scraping process, in order to provide a declarative approach to the scraping task. Finally, the third level provides an implementation of the RDF scraping model for specific technologies. The work has been validated in a scenario that illustrates its application to mashup technologies
Resumo:
Publishing Linked Data is a process that involves several design decisions and technologies. Although some initial guidelines have been already provided by Linked Data publishers, these are still far from covering all the steps that are necessary (from data source selection to publication) or giving enough details about all these steps, technologies, intermediate products, etc. Furthermore, given the variety of data sources from which Linked Data can be generated, we believe that it is possible to have a single and uni�ed method for publishing Linked Data, but we should rely on di�erent techniques, technologies and tools for particular datasets of a given domain. In this paper we present a general method for publishing Linked Data and the application of the method to cover di�erent sources from di�erent domains.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies for describing different domains. Par-ticular LD development characteristics such as agility and web-based architec-ture necessitate the revision, adaption, and lightening of existing methodologies for ontology development. This thesis proposes a lightweight method for ontol-ogy development in an LD context which will be based in data-driven agile de-velopments, existing resources to be reused, and the evaluation of the obtained products considering both classical ontological engineering principles and LD characteristics.
Resumo:
Linked data offers a promising setting to encode, publish and share metadata of resources. As the matter of fact, it is already adopted by data producers such as European Environment Agency, US and some EU Governs, whose first ambition is to share (meta)data making their processes more effective and transparent. Such as an increasing interest and involvement of data providers surely represents a genuine witness of the web of data success, but in a longer perspective, frameworks supporting linked data consumers in their decision making processes will be a compelling need. In this respect, the talk is introducing SSONDE, a framework enabling in detailed comparison, ranking and selection of linked data resources through the analysis of their RDF ontology driven metadata. SSONDE implements an instance similarity especially designed to support in resource selection, namely the process stakeholders engage to choose a set of resources suitable for a given analysis purpose: (i) it deploys an asymmetric similarity assessment to emphasize information about gains and losses the stakeholders get adopting a resource in place of another; (ii) it relies on an explicit formalization of contexts to tailor the similarity assessment with respect to specific user-defined selection goals. The talk aims at providing an insight on SSONDE instance similarity and it will briefly describe some examples of SSONDE deployment in the context of linked data consumption.
Resumo:
This paper describes the process followed in order to make some of the public meterological data from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Office) available as Linked Data. The method followed has been already used to publish geographical, statistical, and leisure data. The data selected for publication are generated every ten minutes by the 250 automatic stations that belong to AEMET and that are deployed across Spain. These data are available as spreadsheets in the AEMET data catalog, and contain more than twenty types of measurements per station. Spreadsheets are retrieved from the website, processed with Python scripts, transformed to RDF according to an ontology network about meteorology that reuses the W3C SSN Ontology, published in a triple store and visualized in maps with Map4rdf.
Resumo:
Provenance models are crucial for describing experimental results in science. The W3C Provenance Working Group has recently released the PROV family of specifications for provenance on the Web. While provenance focuses on what is executed, it is important in science to publish the general methods that describe scientific processes at a more abstract and general level. In this paper, we propose P-PLAN, an extension of PROV to represent plans that guid-ed the execution and their correspondence to provenance records that describe the execution itself. We motivate and discuss the use of P-PLAN and PROV to publish scientific workflows as Linked Data.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
Linked Data is not always published with a license. Sometimes a wrong license type is used, like a license for software, or it is not expressed in a standard, machine readable manner. Yet, Linked Data resources may be subject to intellectual property and database laws, may contain personal data subject to privacy restrictions or may even contain important trade secrets. The proper declaration of which rights are held, waived or licensed is a must for the lawful use of Linked Data at its different granularity levels, from the simple RDF statement to a dataset or a mapping. After comparing the current practice with the actual needs, six research questions are posed.
Resumo:
La Web de Linked Data supone un nuevo paradigma que pretende explotar la Web como un espacio global de información. La aplicación de los principios de esta nueva Web a la información geoespacial superará la integración de información tradicional, logrando una articulación semántica de los datos que haga desaparecer los silos de datos presentes en las actuales Infraestructuras de Datos Espaciales. Ante esta propuesta, en este artículo se describe el trabajo desarrollado en el marco de un caso de uso utilizando una parte de los datos del SIGNA. En este caso de uso se ha llevado a cabo un proceso de generación y publicación de los mencionados datos conforme a los principios de Linked Data y estos se combinan con diversos servicios de la IDEE y CartoCiudad para explotar el componente geoespacial.